B.Sc. Final (Sem-V & VI) Prospectus No. 2016123
Exam. 2015-16

संत गाड़गेबाबा अमरावती विद्यापीठ
SANT GADGE BABA AMRAVATI UNIVERSITY

विज्ञान विभाग
(FACULTY OF SCIENCE)

अभ्यासक्रमिका
विज्ञान स्नातक अंत्य परीक्षा
सत्र-५-हिवाली-२०१५
सत्र-६-उन्नाखी-२०१६

PROSPECTUS
OF
The Examination for the Bachelor of Science
Semester-V, Winter-2015, and
Semester-VI, Summer-2016
& Onwards

2015
Visit us at www.sgbau.ac.in

(Price-Rs. /-)

PUBLISHED BY
Registrar
Sant Gadge Baba Amravati University,
Amravati - 444602

© ‘या अभ्यासक्रमकृत (Prospectus) कोणताही भाग संत गाड़गेबाबा अमरावती विद्यापीठाच्या पूर्वनुसारी शिवाय कोणासही पुनर्मुद्रित करता येऊ नाही.’

© No part of this prospectus can be reprinted or published without specific permission of Sant Gadge Baba Amravati University.
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject</th>
<th>Page No.</th>
<th>Semester-V</th>
<th>Semester-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Special Note</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Direction No.16 of 2010</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Direction No.37 of 2011</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Direction No.1 of 2012</td>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Direction No.5 of 2015</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>Mathematics</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Physics</td>
<td>8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Chemistry</td>
<td>15</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Industrial Chemistry (Regular/Vocational)</td>
<td>25</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Petrochemical Science</td>
<td>32</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Geology</td>
<td>42</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Botany</td>
<td>46</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Environmental Science</td>
<td>55</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Seed Technology (Vocational)</td>
<td>64</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Zoology</td>
<td>71</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Statistics</td>
<td>80</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Computer Science</td>
<td>88</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Computer Application / Information Tech. (Vocational)</td>
<td>91</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Computer Application</td>
<td>94</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Electronics</td>
<td>97</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Biochemistry</td>
<td>101</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Microbiology</td>
<td>112</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Food Science</td>
<td>121</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Industrial Microbiology</td>
<td>127</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Biotechnology (Regular/Vocational)</td>
<td>133</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Bioinformatics</td>
<td>138</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Apiculture</td>
<td>144</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>
Syllabus Prescribed for B.Sc. Final Examination
Semester - V & VI

1. Mathematics
5S Mathematics - Paper – IX
(Analysis)

Unit I: Riemann Integral. Integrability of continuous and monotonic functions. The fundamental theorem of integral calculus. Mean value theorems of integral calculus. Improper integrals and their convergence. Comparison and limit tests.

Reference Books:

Semester V
5-S Paper - X
(Modern Algebra)

Unit I: Normal Subgroups: Definition, examples. Different characterizations of normal subgroups, Algebra of normal subgroups, Quotient group.

Unit III: Ring: Definition, Examples, Properties of ring, Commutative ring, Ring with unity, Zero divisor, Without zero divisor, Boolean ring, Cancellation laws in rings, Subring.

Unit IV: Integral domain and field: Definition, examples, field, Subfield, Prime field, The field of quotients of an integral domain, Characteristics of a ring.

Unit V: Polynomial rings: Division Algorithm theorem, Unique factorization theorem for polynomials over a field,
Polynomials over rational field, Gauss Lemma, The Eisenstein Criterion.
Unique factorization domain (UFD) (only Definition).

Reference Books:

Semester VI
6 S - Paper XI
(Linear Algebra)

Unit II : Linear Transformations: Linear transformation and their representation as matrices. The algebra of linear transformations. The rank nullity theorem. Change of basis.

Unit III : Dual Spaces : Dual space. Bidual space and natural isomorphism. Adjoint of a linear transformation. Eigenvalues and eigenvectors of a linear transformation.

Unit V : Modules : Modules, Submodules, Quotient modules. Homomorphism and Isomorphism theorems.

Reference Books:
Semester – VI
6 S - Paper-XII (Optional)
(Graph Theory)

Unit I: Graph. Application of graphs, finite and infinite graphs, incidence and degree, isolated vertex, pendant vertex and null graph, isomorphism, subgraphs, walks, path and circuits, connected graphs and components, Euler graph, operation on graphs, Hamiltonian paths and circuits, travelling salesman problem.

Unit II: Trees, some properties of trees, pendant vertices in a tree, distance and centres in a tree, Rooted and binary trees, On counting trees, spanning trees.

Unit III: Fundamental circuits, Cutsets, Some properties of cutsets, all cutset in a graph, fundamental circuits and cutsets, connectivity and separability, planar graphs, Kuratowski’s two graphs, different representation of planer graph, detection of planarity.

Unit IV: Vector space associated with a graph, circuit and cutset subspaces, Orthogonal vectors and spaces, Intersection and joint of W_g and W_s.

Unit V: Incidence matrix, Submatrix of A(G), Circuit matrix, Fundamental circuit matrix B, Rank of B, an application to a switching network, cutset matrix, path matrix, adjacency matrix, the relationship among A_f, A_f and C_f.

Reference Books:
1. Narsingh Deo: Graph Theory with Application to Engineering and Computer Science, Prentice Hall Of India, New Delhi.,
3. Olympia Nicodemi : Discrete Mathematics,C.B.SPub. and Distributors 485,Jain Bhavan Bholanath Nagar Shahadara New Delhi-32 India
4. Frank Harare : Graph Theory ,Narosa Publishing House,307 ,Shiv Centre D.B.C. Sector Ku Bazar New Bombay 400704,
5. S.A.Choudum: A first Course In Graph Theory, McMillan India Ltd. Mercatile HouseMagazine Street Bombay 10

8. J.N.Salunke :Boolean Algebra and Graph Theory Laxmi Publication Akot.

Semester VI
6 S – Paper XII (Optional)
(Special Theory of Relativity)

Unit I: Review of Newtonian Mechanics:

Unit II: Relativistic Kinematics:

Unit III: Geometrical representation of Space-Time:
Four dimensional Minkowskian space-time of relativity. Time like, Light Like and space like intervals. Proper time. World line of a particle. Four vector and tensors in Minkowskian space-time.

Unit IV: Relativistic Mechanics:

Unit V: Electromagnetism:
Maxwell’s equation in vacuum. Propagation of electric and magnetic field strengths. Transformation equations for electromagnetic four potential vector. Transformation
equations for electric and magnetic field strengths. Gauge transformation. Lorentz invariance of Maxwell's equations. Lorentz force on a charged particle.

Reference Books:
1. T.M. Karade, K.S. Adhav and M.S. Bendre: Lectures on Spacial Theory of Relativity, Sonu Nilu Publication, Nagpur
5. V.A. Ugarov: Special Theory of Relativity, Mir Publishers, 1979

Unit I: The Process of applied mathematics. Setting of First-order differential equations → Qualitative solutions Sketching.

Unit V: Applications in Ecological and Environmental subject areas. Urban waste water management planning.

Reference Books:

2: PHYSICS
Semester-V
5S PHYSICS

Unit I: Origin of Quantum Mechanics (12 L)
1. Historical Background: Failure of classical wave theory in explaining Black body radiation and Photoelectric Effect; Compton Effect Qualitative explanation only
2. Assumptions of Planck’s Quantum Theory
3. Wave Particle Duality
4. Matter Waves: De Broglie Hypothesis, Davisson Germer experiment
5. Concept of Wave Packet, Phase velocity, group velocity and relation between them.
6. Heisenberg’s uncertainty principle: Different forms of uncertainty principle; Thought experiments: single slit diffraction and Gamma ray microscope

Unit II: The Schrodinger equation and its applications (12 L)
1) Wave function and its physical significance
2) Schrodinger time dependent equation
3) Separation in time dependent and time independent parts
4) Operators in quantum Mechanics
5) Eigen functions and Eigen values
6) Particle in one dimensional and three dimensional box (Energy eigen values)
7) Qualitative analysis of potential barrier Tunneling effect
8) Simple Harmonic Oscillator (Qualitative analysis of Zero point energy)

Unit III : Atomic and Molecular Spectroscopy (12 L)
X-rays: Continuous X-ray spectrum, Duane and Hunt’s law, characteristic X-ray spectra, Mosley’s law.
Raman Effect: stoke’s and anti-stoke’s lines, Quantum theory of Raman effect, Experimental arrangement for Raman Spectroscopy.

Unit IV : Nuclear Physics (12 L)
Detection of charged particles; G. M. counter, Binding energy and Mass defect, stability of nuclei
Alpha Decay: Range of Alpha particles, Geiger - Nuttal law and Gamow explanation of alpha decay (qualitative)
Beta decay: Types and Pauli’s Neutrino Hypothesis
Nuclear Fission, Nuclear fusion (concepts only), Nuclear reactors.

Unit V : Hybrid parameters- low frequency equivalent of CE amplifier & its analyses, Bais stability & thermal runway (qualitative). General principles of amplifier classification, RC coupled amplifier, equivalent circuits & gain at low, medium & high frequency (qualitative), gain-frequency response. Noise & distortion in electronic circuits.

Practical : The distribution of marks for practical examination will be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Book</td>
<td>10</td>
</tr>
<tr>
<td>Viva-voce</td>
<td>10</td>
</tr>
<tr>
<td>Experiment</td>
<td>20</td>
</tr>
<tr>
<td>Assignment</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

a) A student will have to perform at least ten experiments per semester.
b) The semester examination will be of Four Hour duration and student will have to perform one experiment in the semester examination.
c) In assignment, every student should be asked to submit the detailed report on one of experiments he or she has performed. The detailed report should include the theoretical background of the experiment.

1. To study RC coupled amplifier- variation of gain with load.
2. To study phase shift oscillator.
3. To study Wein bridge oscillator.
4. To study Hartlay oscillator.
5. To study Colpits oscillator.
6. To determine e by Millikan’s oil drop experiment.
7. To determine e by Thomsons method.
8. Determination of Rydberg’s constant.
9. To study absorption spectrum of Iodine vapors.
10. To study Raman spectrum.
11. To identify elements in optical line spectrum.
12. To determine absorption coefficient of material for gamma rays.
13. Determination of Hybrid parameters.
15. Study of astable multivibrator.
17. Determination of Plank’s Constant by using LED.
18. To study characteristics of Zener diode.
19. Study of LED characteristics.
20. Study of characteristics of Laser.

6S PHYSICS
STATISTICAL MECHANICS AND SOLID STATE PHYSICS

UNIT-I: Statistical Mechanics

Phase space, unit cell, microstates, macrostates, energy states, density of energy states, probability & thermodynamic probability, principle of equal a priori probabilities, most probable distribution, Boltzman entropy relation.

Maxwell Boltzman statistics, and its application to molecular speed distribution, Average speed, rms speed & most probable velocity.

UNIT-II: Distinguishable & indistinguishable particles, concepts of boson & fermions.

Bose-Einstein statistics: Thermodynamic probability, most probable distribution, application of BE statistics to black body radiation.

Fermi-Dirac distribution: Thermodynamic probability, Most probable distribution, Fermi function, Fermi energy & Fermi temperature.

UNIT-III: Crystallography

Defects in solids - points, line & plane defects.

UNIT-IV: Electrical Properties of Materials

Motion of electron: - Free electrons; conduction electrons, electron collision; mean free path, conductivity & Ohm's law; density of states; concept of Fermi energy.

Band structure: Electron in periodic potential, nearly free electron model (qualitative), energy band, energy gap, metals, insulators and semiconductors.

UNIT-V: Magnetic Properties of Materials

Atomic magnetic moment; magnetization vector; magnetic susceptibility; Dia-, Para-, and Ferromagnetic Materials; Classical Langevin Theory of dia and Paramagnetic Domains; Quantum Mechanical Treatment of Paramagnetism; Curie's law, Weiss's law; Hysteresis and Energy Loss.

UNIT-VI: Superconductivity & Nano Technology

Superconductivity: Introduction to Superconductors; Critical Temperature; Critical magnetic field; Meissner effect; Type I and type II Superconductors, Idea of BCS theory (No derivation), Cooper pair; Applications of superconductors.

Nano Technology: Introduction to nano size materials, brief History of Nano materials, Effect of reduction of dimensions on physical properties; quantum size effect; Applications of nano materials in different fields.

Practical: The distribution of marks for practical examination will be as follows:

Record Book	10 marks
Viva-voce	10 marks
Experiment	20 marks
Assignment	10 marks

Total 50 marks

a) A student will have to perform at least ten experiments per semester.

b) The semester examination will be of Four Hour duration and student will have to perform one experiment in the semester examination.

c) In assignment, every student should be asked to submit the
detailed report on one of experiments he or she has performed. The detailed report should include the theoretical background of the experiment.

LIST OF EXPERIMENTS:

1. To study crystal models and identification of crystal planes.
2. To study Characteristics of Photocell.
3. To determine Planck’s constant using photocell.
4. To determine energy gap of semiconductor using four probe method.
5. To determine activation energy of Thermister.
6. To determine energy gap of semiconductor using reverse bias method.
7. To study hysteresis losses in transformer core and plot B-H curve.
8. To measure magnetic susceptibility of solids.
9. To study thermo emf using thermocouple.
10. To Determine of temperature coefficient of resistance of platinum using platinum resistance thermometer.
11. To determine lattice parameter using X-ray diffraction pattern.
12. To determine half life period of radioactive substance by GM counter.
14. Demonstrations- Any 4 demonstrations equivalent to 2 experiments.
15. Mini project equivalent to 2 experiments.
16. Computer aided demonstrations (Using computer simulations or animations) (Any 2 demonstrations equivalent to 2 experiments).
17. To study characteristics of Photo diode.
18. To study Zener regulated power supply.
19. Study of transistorized regulated power supply, series pass transistor.
20. Determination of velocity of sound by using sonometer wire.
22. Determination of Band gap energy of a pn junction / zener diode.

REFERENCE BOOKS:

1. Thermodynamics and statistical mechanics-Brijlal Subramanium
2. Statistical Mechanics An Elementary Outline by Avijit Lahiri Universities Press
3. Statistical and Thermal physics - By Lokanathan, R.S. Gambhir,
4. Fundamentals of statistical and thermal physics - By F.Reif
5. Perspectives of modern physics - By A. Beiser
6. Fundamental of Statistical Mechanics - By B.B. Laud
7. A primer of Statistical Mechanics - By R.B. Singh
8. Statistical Mechanics - By Gupta, Kumar
10. Solid State Physics by Kakani and Hemrajani, S. Chand Publication.
15. Problems in Solid State Physics, S.O. Pillai, New Age International (P) Ltd.

References:

1. IGNOU : Practical Physics Manual
2. Saraf : Experiment in Physics
3. S.P. Singh : Advanced Practical Physics
4. Melissons : Experiments in Modern Physics

The examination in Chemistry of Fifth semester shall comprise of one theory paper, internal assessment and practical examination. Theory paper will be of 3 Hrs. duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of 6 hours duration and carry 50 marks.

The following syllabi is prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question in every unit with internal choice for each of 12 marks & one compulsory question covering all the syllabus of Semester-V (8 marks).

5S Chemistry

Total Lectures: 84
Marks: 80

Note: Figures to the right hand side indicate number of lectures.

Unit I
14L

A] Coordination Compounds: Important terms namely molecular or addition compounds, double salts, complex salts, complex ion, ligand, coordination number, central metal ion, etc. Werner’s theory of coordination and its experimental verification on the basis of conductance data and formation of AgCl precipitate in case of cobaltammines. Sidgwick’s electronic interpretation and its drawbacks, effective atomic number. IUPAC rules for nomenclature of coordination compounds. Structural isomerism-ionization, linkage and coordination in complexes. Geometrical isomerism-ionization, linkage and coordination in complexes. Valence bond theory as applied to structure and bonding in complexes of 3d-series elements (Only 4 and 6 coordinates complexes). Inner and outer orbital complexes. Magnetic properties of complexes of 3d series elements. Limitations of VB theory.

Unit II
14L

A] Crystal Field Theory (CFT): Postulates of CFT, Crystal field splitting in octahedral, distorted octahedral, square planar tetrahedral complexes, concept of CFSE, high spin and low spin complexes on the basis of A_0 and pairing energy, distribution of electrons in t_{2g} and e_g orbitals in high spin and low spin octahedral complexes. Factor affecting magnitude of crystal field splitting in octahedral complexes.

B] Electronic Spectra of Transition Metal Complexes: Introduction to spectra, selection rules for d-d transitions, spectroscopic terms-determination of ground term symbols for d1 to d10, spectra of d1 and d9 octahedral complexes, Orgel diagram for d1 and d9 states, electronic spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion. Spectrochemical series.

Unit III
14L

A] Heterocyclic compounds: Nomenclature, Pyrrole: Synthesis from acetylene, succinimide and furan, Basicity, Electrophilic substitution reactions (orientation) \uparrow nitration, sulphonation, acetylation and halogenation, Molecular orbital structure.
Pyrrole: Synthesis from acetylene and pentamethylene diamine hydrochloride, Basicity, Electrophilic substitution reactions (orientation) \uparrow nitration, sulphonation, Nucleophilic substitution reactions (orientation) with NaNH$_2$, C$_6$H$_5$Li and KOH.

B] Organometallic compounds: Grignard reagents: Methyl magnesium bromide- Synthesis from methyl bromide (only reaction) Synthetic applications: Electrophilic substitution reactions-formation of alkanes, alkenes, higher alkenes and other organometallic compounds, Nucleophilic substitution reactions- Reaction with aldehydes and ketones, ethylene oxide, acetyl chloride, methyl cyanide and CO$_2$.
Methyl lithium-Synthesis and reaction with water, formaldehyde, acetaldehyde, acetone, ethylene oxide and CO$_2$.

Chelates: Definition, classification and applications of chelates in analytical chemistry. Stability of chelate with special reference to chelate effect.
Unit IV

A] **Dyes:** Classification on the basis of structure and mode of application. Preparation and uses of Methyl orange, Crystal violet, Phenolphthalein, Alizarin and Indigo. [5]

C] **Pesticides:** Insecticides: Synthesis and uses of malathion. Herbicides: Synthesis and uses of 2,4-dichlorophenoxy acetic acid (2,4-D). Fungicides: Synthesis and uses of thiram (tetramethyl thiuram disulphide). [4]

Unit V- Photochemistry

Unit VI- Molecular Spectroscopy

(i) Electromagnetic radiation, characteristics of electromagnetic radiation in terms of wavelength, wave number, frequency and energy of photon. Spectrum of electromagnetic radiation. (ii) Types of spectra - Emission and absorption spectra, atomic and molecular spectra, line and band spectra (iii) Translational, vibrational, rotational and electronic motion. The degree of freedom in each motion. (iv) Energy level diagram of a molecule indicating electronic, vibrational and rotational transitions. (v) Condition for pure rotational spectrum (i.e. microwave active molecules), selection rule for rotational transition. Derivation of expression for moment of inertia of a diatomic rigid rotor. Isotope effect. Applications of microwave spectroscopy for the determination of moment of inertia and bonding. (vi) Condition for exhibiting vibrational spectra (i.e. IR active molecule), selection rule for vibrational transition. Vibrational energy levels of a simple harmonic oscillator. Zero point energy, position of a spectral line. Determination of force constant of a covalent bond. (v) Raman effect - Raman’s spectrum of a molecule. Condition for exhibiting Raman spectrum (i.e. Raman active molecule), selection rule for rotational transitions. Pure rotational spectrum of diatomic molecule, vibrational Raman spectrum of a diatomic molecule. (vii) Numericals. [14]

Semester- V

5S Chemistry Practicals

Total Laboratory sessions: 26 Marks: 50

Exercise 1: Inorganic Preparations 12 Laboratory sessions
1. Preparation of tetraamminecopper(II)sulphate.
2. Preparation of hexaamminenickel(II)chloride.
3. Preparation of potassiumtrioxalate aluminate(III).
4. Preparation of Prussian blue.
5. Preparation of chrome alum.
6. Preparation of sodium thiosulphate and dithionite.

(Comment on VB structure, magnetic properties and color of 1, 2 and 3 complexes)

Exercise II: Physical Chemistry experiments 14 Laboratory sessions
(Standard oxalic acid solution should be prepared by the students)
1. To determine strength of given HCl solution conductometrically.
2. To determine strength of given CH₃COOH solution conductometrically.
3. To determine strength of given HCl solution potentiometrically.
4. To determine strength of HCl and CH₃COOH in a given mixture conductometrically.
5. To determine redox potential of Fe²⁺/Fe³⁺ system potentiometrically.
6. To determine molecular weight by Rast method.
7. To determine specific rotation of optically active compound by Polarimeter.
Distribution of Marks for Practical Examination

Time: 6 hours (One Day Examination) Marks: 50

- **Exercise-I**
 - Marks: 18

- **Exercise-II**
 - Marks: 18

- **Viva-Voce**
 - Marks: 07

- **Record**
 - Marks: 07

Total: 50

**Semester- VI
6S Chemistry**

Total Lectures: 84 **Marks: 80**

Note: Figures to the right hand side indicate number of lectures.

Unit I
14L

A| Kinetic Aspects of Metal Complexes :
[6]

B| Analytical Chemistry :

1) **Spectrophotometry and Colorimetry :-**
[4]

Concept of ε_{max}, Beer-Lambert’s law (Only statement and final equation, no derivation). Calibration curve and its importance. Validity and limitations of Beer-Lambert’s law. Verification of Beer’s law. Block diagram of colorimeter and spectrophotometer with brief description of each component and its function. Difference between colorimetric and spectrophotometric technique for determination of concentration of metal ion (Example of determination of Cu(II)).

2) **Paper Chromatography :-**
[4]

Unit II
14L

A| Organometallic Chemistry :
[5]

Definition, nomenclature and classification of organometallic compounds. Metal carbonyls- definition and classification. Preparation, properties, structure and bonding in Ni(CO)$_4$, Fe(CO)$_5$, Cr(CO)$_6$. Nature of M-C bond in metal carbonyls.

B| Inorganic Polymers:
[5]

C| Bio-inorganic Chemistry:
[4]

Essential and trace elements in biological processes. Biological role of Na$^+$, K$^+$, Ca$^{2+}$ and Mg$^{2+}$ ions. Metalloporphyrins-Haemoglobin and Myoglobin and their role in oxygen transport.

Unit III
14L

A| Electronic spectroscopy:

Introduction, theory, instrumentation, types of electronic transitions, presentation of electronic spectrum, terms used- chromophore, auxochrome, bathochromic shift, hypsochromic shift, hyperchromic effect and hypochromic effect. Applications in the structure determination of dienes, â,â-unsaturated aldehydes and ketones, aromatic compounds.

B| Infrared spectroscopy:

Introduction, Types of molecular vibrations- stretching and bending, Calculation of vibrational modes, force constant, instrumentation, interpretation of IR, H-stretching, triple bond, double bond and Finger print regions, IR spectra of H$_2$O, CO$_2$, C$_2$H$_5$OH, CH$_3$CHO, CH$_3$COOH and CH$_3$CONH$_2$.

Unit IV
14L

A| NMR spectroscopy:

Introduction, spin quantum number, instrumentation, Aspects of NMR- number of signals(equivalent and non-equivalent protons), positions of signals(chemical shift), intensities of signals, splitting of signals (spin-spin coupling), coupling constant, applications.

B| Mass spectroscopy:

Introduction, theory, instrumentation-(ion sources), Mass spectra of neopentane and methanol, molecular ion peak, base peak, metastable peak, Rules of fragmentation, applications.

Unit V- Elementary Quantum Mechanics
14L

(i) Limitations of classical mechanics. Plank’s quantum theory (postulates only). Photoelectric effect - Experiments, observation and Einstein’s explanation. Compton effect and its explanation. (ii) de Broglie hypothesis of matter waves. de Broglie’s equation. Heisenberg’s uncertainty principle. (iii) Classical wave equation, derivation of time independent Schrodinger’s wave equation in one-dimension and its extension to a three-dimensional space. Well behaved wave function, physical significance of wave function (Born interpretation). (iv) Application of Schrodinger wave equation to a particle in one-
dimensional box and its extension to a three-dimensional box. Concept of atomic orbital. Numericals.

Unit VI

A| Electrochemistry: (i) Types of electrode - Standard hydrogen electrode, Calomel electrode, Quinhydrone electrode and Glass electrode. Principle of Potentiometric titration. Study of acid-base, redox and precipitation titration. (ii) pH of a solution and pH scale. Determination of pH of a solution using hydrogen, quinhydrone and glass electrodes. Advantage and disadvantage of these electrodes. pH-metric titrations. Determination of pka of a weak acid by pH-metric measurement. (iii) Concentration cells - Types of concentration cells, concentration cell without transfer and determination of its emf. (iv) Numericals

Semester- VI

6S Chemistry Practicals

Total Laboratory sessions: 26
Marks: 50

Exercise I: Organic Chemistry Experiments: 16 Laboratory sessions
1. Estimation of formaldehyde.
2. Estimation of glycine.
3. Estimation of ascorbic acid (vitamine C).
4. Estimation of phenol by bromination method.
5. Estimation of aniline by bromination method.
7. Estimation of unsaturation by bromination method.
8. Determination of iodine value of oil.
9. Determination of equivalent weight of an ester by saponification.
10. Separation of a mixture of methyl orange and methylene blue by thin layer chromatography (using benzene).

11. Separation of a mixture of 2,4-dinitro phenyls of acetaldehyde and benzaldehyde by thin layer chromatography (using benzene : petroleum ether = 3:1).
12. Separation of a mixture of dyes by thin layer chromatography (using cyclohexane:ethyl acetate = 8.5:1.5).
13. Separation of a mixture of 2,4-dinitro phenyls of acetaldehyde and benzaldehyde by thin layer chromatography (using toluene: petroleum ether).

Exercise II: Physical Chemistry experiments 10 Laboratory sessions
1. To determine dissociation constant of weak acid by conductometry.
2. To determine dissociation constant of weak acid by potentiometry.
3. To study potentiometric titration of KCl and AgNO₃.
4. To determine dissociation constant of dibasic acid by pH-metry.
5. To verify Beer’s Lambert’s law using KMnO₄/K₂Cr₂O₇.
6. To determine pH of a soil sample by pH-meter.
7. To determine solubility and solubility product of sparingly soluble salts conductometrically.
8. To study strong acid and strong base titration by pH-metry.

Distribution of Marks for Practical Examination
Time: 6 hours (One Day Examination) Marks: 50

Exercise-I

é é é .. 18

Exercise-II

é é é .. 18

Viva-Voce

é é é . 07

Record

.é é . 07

δ δ δ δ δ δ

Total: 50

Books Recommended: (Common for Semester V and Semester VI)
3. Selected Topics in Inorganic Chemistry by Malik, Tuli and Madan- S. Chand & Co.
6. Concise Inorganic Chemistry by J.D. Lee, ELBS.
9. Modern Inorganic Chemistry by W.L. Jolly, ELBS.
10. Chemistry Facts, Patterns & Principles by Kneen, Rogers and Simpson, ELBS.
12. Inorganic complex compounds by Murmann, Chapman & Hall.
24. Stereochemistry and mechanism through solved problems by P.S. Kalsi.
31. Comparative Practical Organic Chemistry (Qualitative Analysis) by V.K. Ahluwalia and Suniţa Dhingra, Orient Longman.
32. Comprehensive Practical Organic Chemistry (Preparation and Qualitative Analysis) by V.K. Ahluwalia and Renu Agrawal, Orient Longman.
40. Practical Physical Chemistry: Palit and De.
41. Practical Physical Chemistry: Yadoi.
42. Practical Physical Chemistry: Khosla.
44. Practical Chemistry: Dr. S.B. Lohiya, Bajaj publication, Amravati.

List of equipments/apparatus required for the Chemistry Practicals for BSc.

1. Abbe’s Refractometer 02 nos/batch
2. Viscometer 10 nos/batch
3. Stalagmometer 10 nos/batch
4. Melting Point Apparatus 10 nos/batch
5. Thermometer 0-360°C 20 nos/batch
6. Thermometer 0-110°C 20 nos/batch
7. Analytical balance 15 nos/batch
8. Weight box 15 nos/batch
9. Density Bottles 20 nos/batch
10. Kipp’s Apparatus 02 nos/batch
11. Quick fit Distillation Assembly/Multipurpose assembly 10 nos/batch
12. Sintered Glass Crucible 20 nos/batch
13. Silica Crucible 20 nos/batch
14. Vacuum Suction Pump 02 nos/lab.
15. Potentiometer 02 nos/batch
16. Metzer Electronic one pan balance 01 nos/lab.
17. Filtration flask with Buckner Funnes 100ml 10 nos/batch
250ml 05 nos/batch
500ml 02 nos/batch
18. Desiccators 10 nos/batch
19. Magnetic Stirrer 10 nos/batch
20. Water Suction 10 nos/batch
21. Conductometer with Conductivity Cell 04 nos/batch
22. Colorimeter 02 nos/batch
23. pH Meter 02 nos/batch
24. Chromatographic Jar 05 nos/batch
25. Separating funnels 250ml, 500ml 05 nos/batch
26. Hot Air Oven 02 nos/lab.
27. Hot-Cold Air Blower 01 no/lab.
28. Centrifuge machine (Electrically Operated) 02 nos/lab.
29. Deioniser/ Water Still (Electrically Operated) 01 no/lab.
30. Hot Plate/ Heating Mantle 05 nos./batch
31. Models of Elements (Seven Crystal types and their symmetry) 01 no./batch
32. Flame Photometer 02 nos./batch
33. Spectrophotometer 02 nos./batch
34. Shaking Machine 01 no./batch
35. Polarimeter 02 nos./batch

4. INDUSTRIAL CHEMISTRY (REGULAR/ VOCATIONAL)

The examination in Industrial Chemistry (Regular/ Vocational) of Fifth semester shall comprise of one theory paper, internal assessment and practical examination. Theory paper will be of 3 Hrs. duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of 6 to 8 hours duration and carry 50 marks.

The following syllabi is prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question in every unit with internal choice for each of 12 marks & one compulsory question covering all the syllabus of Semester-V (8 marks).

B.Sc. Part- III (Semester- V)
5S Industrial Chemistry (Regular/ Vocational)
Chemical Process Economics, Heavy and Fine Chemicals

Total Lectures: 84 Marks: 80
Note: Figures to the right hand side indicate number of lectures.

Unit-I :
Manufacturing of the following:- Ammonia, nitric acid, ammonium sulphate, ammonium nitrate, caustic soda, chlorine, ammonium phosphate, superphosphate, triple superphosphate with reference to following considerations:
 i) Consumption pattern ii) Raw materials
 iii) Major engineering problems.

Unit-II :
Manufacturing of the following:- Lime, calcium carbide, silicon carbide, fluorine, sodium carbonate, sulphuric acid, hydrochloric acid, soda ash by Solvay process, urea with reference to following considerations:
 i) Consumption pattern ii) Raw materials
 iii) Major engineering problems.

Unit-III :

 A) Essential Oils – Introduction, extraction methods of essential oils - Steam distillation, solvent extraction, and expression.
 Uses of following essential oils- menthol, citral, camphor, turpentine.
 B) Edible Oil – Manufacturing of Soyabean oil by solvent extraction process, refining of crude vegetable oil. Hydrogenation of vegetable oil (Dry and wet processes), saponification value, iodine value, acid value and ester value.
 C) Manufacturing of soap, recovery of glycerin, cleansing action of soap.

Unit-IV :
Fischer Tropsch synthesis with examples, chlorination of methane and its major engineering problems, manufacturing of mono, di, triethanolamines and its uses. Manufacturing of acetylene, ethylene, vinyl acetate, isopropanol, vinyl chloride with reference to following considerations-:
 i) Raw materials ii) Major engineering problems
 iii) Uses.

Unit-V :

 A) Industrial gases- Introduction, Manufacturing and uses of following industrial gases - Oxygen and nitrogen, carbon dioxide liquefaction of CO₂ (Dry Ice).
 B) Safety- Introduction, concern for chemical safety, hazards and their control in petrochemical industries, hazards in storage, handling and uses of chemicals.

Unit-VI :
Process Economics

 A) Cost Estimation- Cash flow for industrial operations, cumulative cash position, factors affecting investment and production cost.
 B) Interest- Simple and compound interest, nominal and effective interest
C) **Depreciation** - Introduction, service life, salvage value. Methods for depreciation - straight line method, declining balance method, sum of years digits method.

D) **Profitability, profitability evaluation**: Rate of return on investment and discounted cash flow method. Break even point.

5S Industrial Chemistry Practical

List of Experiments

Unit I
1) Determination of acid value of edible oil.
2) Determination of saponification value of edible oil.
3) Determination of iodine value of edible oil.
4) To determine the strength of hydrogen peroxide solution.
5) To determine the strength of aniline solution.
6) To determine the strength of formalin solution.

Unit II
1) Preparation of 3-nitroaniline.
2) Preparation of 4-bromoaniline.
3) Preparation of 4-nitrobenzoic acid.
4) Preparation of soap.
5) Preparation of phthalamide.
6) Extraction of oil from oil seeds.

Distribution of Marks for Practical Examination

Time: 6 – 8 hours (One Day Examination)

Marks: 50

Unit I: (Exercise No. 1) *é é é .. 15*

Unit II: (Exercise No. 2) *é é é .. 15*

Viva-Voce *é é 10*

Record *é é é .. 10*

6 6 6 6 6 6 6

Total: 50

6 6 6 6 6 6 6

Books Recommended

List of equipments/ Apparatus/ glassware’s required for the B.Sc. Industrial Chemistry practical for a batch.

1. Melting point apparatus 02 nos.
2. Thermometer 0 to 360°C 10 nos.
3. Thermometer 0 to 110°C 10 nos.
4. Analytical balance 02 nos.
5. Weight box 02 nos.
6. Silica crucible 20 nos.
7. Sintered glass crucible 20 nos.
8. Measuring cylinder 100 ml 05 nos.
9. Separating funnels 250 ml 05 nos.
11. Burette 50 ml 20 nos.
12. Volumetric flask 100 ml 10 nos.
13. Volumetric flask 250 ml 10 nos.
14. Round bottom flask with reflux Condenser 10 nos.
15. Beaker 100 ml 20 nos.
16. Beaker 250 ml 20 nos.
17. Beaker 500 ml 05 nos.
18. Burette Stand 20 nos.
19. Pipette 10 ml and 25 ml 20 nos.
20. Conical Flask 100 ml and 250 ml 20 nos.

Semester-VI

6S Industrial Chemistry (Regular/Vocational)

Instrumental Methods of Chemical Analysis, Green chemistry

Total Lectures: 84

Marks: 80

Note: Figures to the right hand side indicate number of lectures.

Unit-I

A) Sampling procedures, sampling of bulk materials,
techniques of sampling solids, liquids, gases. Collecting and processing of data.

B) **Errors**- Types of errors, nature and origin of error. Accuracy, precision, mean deviation, standard deviation, relative standard deviation and confidence limits.

Unit-II :

Chromatography - Theories of chromatography- plate and rate theory, classification of chromatographic techniques.

Paper chromatography and TLC- Introduction, principles, types of migration parameter (RF value). Experimental details, applications.

GLC and HPLC- Introduction, principles, instrumentation, apparatus and materials, column efficiency and selectivity, applications.

Liquid-Liquid partition chromatography and adsorption chromatography

Unit-III :

A) **Column chromatography**- Principle, experimental details, column efficiency, factors affecting column efficiency, applications.

B) **Ion Exchange**- Classification of ion exchangers, ion exchange equilibria, ion exchange capacity, chelating ion exchanger, factors affecting the separation of ions and applications in analytical chemistry.

C) **Solvent Extraction**- Classification of solvent extraction systems, basic principles involved in extraction. Factors affecting extraction, techniques of extraction, applications of solvent extraction in industries.

Unit-IV :

A) **Flame Photometry**- Elementary theory, instrumentation and experimental techniques, combustion flames and applications.

B) **I.R. Spectroscopy**- Principles, techniques, instrumentation and applications in chemical analysis of industrial materials.

C) **X-ray fluorescence**- Principles, techniques, flow sheet, applications for determination of heavy metals in environmental sample.

Unit-V :

Dye- Introduction, classification of dyes- on the basis of mode of applications and on chemical constitutions. Acid dyes, basic dyes, sulphur dyes, pigment dyes. Dye intermediates. Preparation and uses of methyl orange dye, picric acid and aurine dye, indigo dye, congo red, crystal violet and alizarin dye. Non textile use of dye stuffs.

Unit-VI :

Green Chemistry- Introduction, Goals of green chemistry, principles of green chemistry. Basic components of green chemistry research- Alternative starting materials or feed stock, alternative reagents or transformations, alternative reaction conditions and alternative final products or target molecules. Optimization of framework for the design of greener synthetic pathway. Green solvents, ionic liquids green fuels and E- green propellants, biocatalysis.

6S Industrial Chemistry Practical

List of Experiments :

Unit I

1) Separation of Cu^{2+}-Ni^{2+} ions by paper chromatography.
2) Separation of plant pigments xanthophylls, chlorophyll by paper chromatography.
3) Separation of dyes by T.L.C.
4) Estimation of sodium and potassium by flame photometry.
5) Separation of amino acids by paper chromatography.
6) To detect the impurities in organic compounds by T.L.C.

Unit II

1) Removal of hardness by ion exchange resins.
2) Separation of Cu^{2+}-Ni^{2+} ions by solvent extraction.
3) Separation of Co\(^{2+}\)-Ni\(^{2+}\) ions by ion exchange.
4) Preparation of picric acid dye.
5) To determine the capacity of an anion exchange and cation exchange resin by column method.
6) Separation of Fe\(^{3+}\) and Mg\(^{2+}\) by solvent extraction.

Distribution of Marks for Practical Examination

Time:

6 – 8 hours (One Day Examination)
Marks: 50

Unit-I: (Exercise No. 1)
- Viva-Voce: 15
- Record: 10
- Total: 50

Unit-II: (Exercise No. 2)
- Viva-Voce: 10
- Record: 10
- Total: 50

Books Recommended

1) Instrumental methods of Chemical Analysis – Gurudeep Chatwal and Anand
2) Quantitative Inorganic Analysis – A.I. Vogel

List of equipments/ Apparatus/ glassware’s required for the B.Sc. Industrial Chemistry practical for a batch.

1. Melting point apparatus 05 nos.
2. Thermometer 0 to 360\(^\circ\)C 10 nos.
3. Thermometer 0 to 110\(^\circ\)C 10 nos.
4. Analytical balance 05 nos.
5. Weight box 05 nos.
6. Silica crucible 20 nos.
7. Sintered glass crucible 20 nos.
8. Chromatographic jar 05 nos.
9. Separating funnels 250 ml 05 nos.
11. Burette 50 ml 20 nos.
12. Volumetric flask 100 ml 10 nos.
13. Volumetric flask 250 ml 10 nos.
14. Round bottom flask with reflux Condenser 10 nos.
15. Beaker 100 ml 20 nos.
16. Beaker 250 ml 20 nos.
17. Beaker 500 ml 05 nos.
18. Burette Stand 20 nos.
19. Pipette 10 ml and 25 ml 20 nos.
20. Conical Flask 100 ml and 250 ml 20 nos.
21. Ion exchange column 01 no.
22. Flame photometer 01 no.

5. PETROCHEMICAL SCIENCE

The examination in Petrochemical Science of Fifth semester shall comprise of one theory paper, internal assessment and practical examination. Theory paper will be of 3 Hrs. duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of 6 to 8 hours duration and carry 50 marks.

The following syllabi is prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question in every unit with internal choice for each of 12 marks & one compulsory question covering all the syllabus of Semester-V (8 marks).

Semester- V

5S Petrochemical Science

Total Lectures: 84
Marks: 80

Note: Figures to the right hand side indicate number of lectures.

Unit-I : Basic concepts in polymerization
- What are polymers
- How are polymers made
- Classification of polymers
 - Thermosetting and Thermoplastic
 - Homo and Co-polymers
- Methods of polymerization
 - Cationic
 - Anionic
 - Radical
Polymerization techniques
- Bulk
- Solution
- Suspension
- Emulsion
- Examples of polymerization catalysts, Introduction to cross linking and agents

Unit-II: Ethylene (C₂) and propylene (C₃) polymers [14]
- Chemistry (reaction mechanism, catalysts), properties, manufacture (Flow scheme, and operating variables) and applications of:
 - High Density Poly-Ethylene (HDPE)
 - Low Density Poly-Ethylene (LDPE)
 - Poly propylene
- Introduction to Ethylene- Propylene co-polymers (EPM rubber)

Unit-III: C₄ based polymers [14]
- Chemistry (reaction mechanism, catalysts), properties, manufacture (Flow scheme, and operating variables) and applications of:
 - Poly butylenes (Butyl rubber)
 - Di-iso butylenes
 - Poly butadiene
 - Poly isoprene
 - Poly chloroprene (Neoprene)
- Introduction to:
 - Butadiene- Styrene co-polymers (SBR)
 - Butadiene- Acrylonitrile co-polymer (ABN)

Unit-IV : Vinyl and styrene polymers [14]
- Chemistry (reaction mechanism, catalysts), properties, manufacture (Flow scheme, and operating variables) and applications of:
 - Poly vinyl chloride (PVC)
 - Poly vinyl acetate (PVA)
 - Polystyrene
- Introduction to co-polymers of styrene:
 - Acrylonitrile/Butadiene-Styrene co-polymer (ABS)
 - Styrene-Acrylonitrile co-polymer (SAN)

Unit-V: Condensation polymers [14]
- Chemistry (reaction mechanism, catalysts), properties, manufacture (Flow scheme, and operating variables) and applications of:
 - Nylon- 6
 - Nylon- 6,6
 - Phenol-Formaldehyde resin
 - Urea-Formaldehyde resin
- Introduction to:
 - Nylon- 6, 10
 - Nylon-12
 - Nylon-11
 - Saturated polyesters
 - Unsaturated polyesters

Unit-VI : Waxes/Bitumen/Greases [14]
- Petroleum Waxes
- Types and Sources of waxes
- Paraffin waxes
- Microcrystalline waxes
- Important properties of petroleum waxes
- Manufacture of petroleum waxes
- Chilling and pressing process
- De-waxing with solvents
- MEK de-waxing process
- Uses of petroleum waxes
- Petroleum Jellies
- Bitumen
- Bitumen
- Asphalts
- Chemical Structure of asphalt
- Classes of Bitumen
- Quality specification of bitumen
- Uses of Bitumen
- Greases
- Type of greases
- Manufacture various type of grease
- Properties, testing and uses of grease
5S Petrochemical Science Practical

List of Experiments

1. Preparation and melting point determination of Nylon-6
2. Preparation and melting point determination of Nylon-6 ,6
3. Preparation and melting point determination of polystyrene
4. Preparation and melting point determination of Phenol-formaldehyde resin
5. Preparation and melting point determination of urea - formaldehyde resin
6. Molecular weight determination of plastic material
7. Determination of drop point and dropping point of grease
8. Oil in wax determination in given oil sample
9. Determination of saponification value of plastic material
10. Determination of acid value of plastic material
11. Determination of bromine number of plastic material
12. Study of vulcanization of rubber using sulfur powder
13. Preparation and melting point determination of some rubber materials

Distribution of marks for practical examination
Time: 6 hours (One Day Examination) Marks : 50
Exercise No. I : (Practical Expt.)é ê é 15 Marks
Exercise No. II: (Practical Expt.)ê ê ê 15 Marks
Viva-Voce:é é é é é é é éé é é é é 10 marks
Recordé é é é ..é é é ..é .. é .. é 10 Marks
Total ... 50 Marks

Semester- VI
6S Petrochemical Science

Total Lectures: 84 Marks: 80

Note: Figures to the right hand side indicate number of lectures.

Unit-I : Advanced Instrumental Techniques for Petroleum and Petrochemical Product Characterization
SPECTROSCOPY-I [14]
- Introduction to
 - Electromagnetic radiations
 - UV-Visible, Infra-red region
 - Electronic spectrum and absorption radiations

Unit-II : Advanced Instrumental Techniques for Petroleum and Petrochemical Product Characterization-SPECTROSCOPY-II [14]
- Principle, Theory, working (Instrumentation) and application (Hydrocarbon Compound)of following spectroscopic techniques
 - UV-Visible (Calculation of ϵ_{max} value of ethanol)
 - IR(study of model spectra of : Benzene, Phenol, Aniline)

Unit-III : Advanced Instrumental Techniques for Petroleum and Petrochemical Product Characterization-CHROMATOGRAPHY [14]
- Basic principles involved in chromatography
 - Definition of chromatography
 - Stationary phase
 - Mobile phase
 - Concept of Polarity
 - Polarity of different liquid samples
 - Role of detectors
 - Various detectors

- Principle, Theory, working (Instrumentation) and application (Hydrocarbon Compound)of following chromatographic techniques
 - GLC
 - HPLC
Unit-IV : Catalysts in petroleum refining and petrochemical processes [14]
- Introduction
- Homogeneous and heterogeneous catalysts
- Catalysts morphology and activity
- Catalysts for petroleum refining
 - Cracking catalysts
 - Reforming catalysts
 - Hydro-treating catalysts
- Catalysts for petrochemical Industry
 - Catalysts for synthesis gas
 - Hydrogenation catalysts
 - Hydrocarbon oxidation catalysts
 - Polymerization catalysts
- Recent advances in industrial catalysis
- Role of polymers in catalysis

Unit-V : Future of petrochemicals [14]
- Integrated petrochemical complexes
- Energy crises and the petrochemical industry
 - Natural gas as petrochemical feedstock
 - Impact of heavy feedstocks on petrochemicals
 - Ecology and energy crisis
 - Coal as an alternative to oil
- Energy crisis and the industrial fuels
 - Natural fuels
 - Synthetic fuels
 - Hydrogen: Fuel of tomorrow
 - Bio-Fuels
- Trends in petrochemical industries

Unit-VI : Pollution control in petroleum refineries and petrochemical processing units [14]
- Definition of pollution
- Kinds of pollution
- Air pollution
 - Sources of air pollution in refineries and petrochemicals manufacturing units
 - Air pollution control techniques and options
- Water pollution
 - Sources of water pollution in refineries and petrochemicals manufacturing units
- Control of Water pollution
- Indian standards for liquid effluents and inland surface water (Most considerable characters like TSS, pH, TDS, BOD, COD, DO, Temperature, sulphates, chlorides, sodium.)
- Soil pollution
 - Sources of soil pollution in refineries and petrochemicals manufacturing units
 - Soil pollution control techniques

Petrochemical Science Practical
List of Experiments
1. Determination of purity of a chemical compound using TLC
2. Separation of a chemical compound using column chromatography
3. Determination of pH of soil (Soil near any chemical laboratory waste outlet).
4. Determination of B.O.D. of given sample
5. Determination of C.O.D. of given sample
6. Determination of D. O. of given sample
7. Use of UV-Visible spectrophotometer for determination of % transmission, O.D. Concentration and adsorption
8. Determination of hardness of given water sample
9. Extraction of oils from oil bearing seeds
10. Determination of given specific refraction and molar refraction of given sample using Abbe’s refractometer
11. Determination of Calorific value of given sample

Distribution of marks for practical examination
Time: 6 hours (One Day Examination) Marks: 50
Exercise No. I: (Practical Expt.)\[14\] 15 Marks
Exercise No. II: (Practical Expt.)\[14\] 15 Marks
Viva-Voce\[14\] 10 marks
Record\[14\] 10 Marks
Total \[14\] 50 Marks

List of books
1. Petroleum refining and petrochemicals, N.K. Sinha, Umesh Publications, Delhi
2. Advanced petrochemicals, Dr. G. N. Sarkar, Khanna Publications, Delhi
3. A text on petrochemicals, B.K. B Rao, Khanna Publications, Delhi
5. Fuels and Combustions, Sameer Sarkar, Orient-Longman Ltd. Hyderabad
7. Systematic experimental physical chemistry, S.W. Rajahboj, Dr. T.K. Chondhekar, Anjali publications Aurangabad
8. Advanced Petroleum refining, G.N. Sarkar, Khanna Publications, Delhi
9. Petroleum refining technology, Dr. Ram Prasad, Khanna Publications, Delhi
10. Unit operations II, K.A. Gavane, Nirali prakashan, Pune
11. Modern petroleum refining processes, Dr. B.K. Bhaskarrao, Oxford-IBH publication New Delhi
15. Chemicals from synthesis gas, R.A. Sheldon, B. Reidel Publishing Company, Dordrecht
17. Dryden’s outline of chemical technology, M. Gopalrao, Marshall Stings, East-west Publications
26. Environmental chemistry by S.S. Dara, S.Chand and Company pub., New Delhi
27. Pollution monitoring and control, Dr. Priya Rajan Trivedi
29. NEERI manuals
30. Chemical Methods for Environmental Analysis, R. Rameth
31. Instrumental method of chemical analysis, Willard Merit and Dean
32. Chromatography, Shrivastav and Shrivastav.

LIST OF APPARATUS AND EQUIPMENTS FOR A BATCH OF 20 STUDENTS FOR B.SC. 5th and 6th semester PETROCHEMICAL SCIENCE

<table>
<thead>
<tr>
<th>Sr No.</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Burette</td>
<td>20 Nos.</td>
</tr>
<tr>
<td>2.</td>
<td>Pipette 10ml, 25ml</td>
<td>20 Nos.each</td>
</tr>
<tr>
<td>3.</td>
<td>Mohr pipette 2ml, 5ml</td>
<td>10 Nos. each</td>
</tr>
<tr>
<td>4.</td>
<td>Conical flask with stopper</td>
<td>50 Nos.</td>
</tr>
<tr>
<td>5.</td>
<td>Standard volumetric flask</td>
<td>20 Nos.</td>
</tr>
<tr>
<td>7.</td>
<td>Balance (Electronic/Digital)</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>8.</td>
<td>Aniline Point Apparatus</td>
<td>01 No</td>
</tr>
<tr>
<td>9.</td>
<td>U-tube viscometer of different capillary size</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>10.</td>
<td>Thermometer (0 to 110oC I P Grade)</td>
<td>10 Nos.</td>
</tr>
<tr>
<td>11.</td>
<td>Thermometer (0 to 360oC I P Grade)</td>
<td>10 Nos.</td>
</tr>
<tr>
<td>12.</td>
<td>Test tube (20 and 50 ml with rubber cork)</td>
<td>50 Nos.</td>
</tr>
<tr>
<td>13.</td>
<td>Smoke Point Apparatus (I P Grade)</td>
<td>01 No.</td>
</tr>
<tr>
<td>14.</td>
<td>Abel Flash Point apparatus (I P Grade)</td>
<td>01 No.</td>
</tr>
<tr>
<td>15.</td>
<td>Pensky Marten’s Flash Point apparatus</td>
<td>01 No.</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Quantity</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>16</td>
<td>Cleveland Open Cup Flash point Apparatus</td>
<td>01 No.</td>
</tr>
<tr>
<td>17</td>
<td>Porcelain dish</td>
<td>10 Nos.</td>
</tr>
<tr>
<td>18</td>
<td>Constant Temperature bath</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>19</td>
<td>Hot Plate</td>
<td>01 No.</td>
</tr>
<tr>
<td>20</td>
<td>Air condenser</td>
<td>20 Nos.</td>
</tr>
<tr>
<td>21</td>
<td>Glass tubing 6mm, 10mm</td>
<td>20 ft. Each</td>
</tr>
<tr>
<td>22</td>
<td>Glass rod 4mm, 8mm</td>
<td>20 ft. Each</td>
</tr>
<tr>
<td>23</td>
<td>Stop watches</td>
<td>04 Nos.</td>
</tr>
<tr>
<td>24</td>
<td>LPG Cylinder with regulator</td>
<td>01 No.</td>
</tr>
<tr>
<td>25</td>
<td>Refractometer</td>
<td>01 No.</td>
</tr>
<tr>
<td>26</td>
<td>Refrigerator</td>
<td>01 No.</td>
</tr>
<tr>
<td>27</td>
<td>Water Distillation Plant</td>
<td>01 No.</td>
</tr>
<tr>
<td>28</td>
<td>Beaker 250 ml</td>
<td>20 Nos.</td>
</tr>
<tr>
<td>29</td>
<td>Beaker 50, 100, 500, 1000 ml</td>
<td>07 Nos.</td>
</tr>
<tr>
<td>30</td>
<td>Hot Air Oven</td>
<td>01 No.</td>
</tr>
<tr>
<td>31</td>
<td>Heating Furnace</td>
<td>01 No.</td>
</tr>
<tr>
<td>32</td>
<td>Karl Fisher Auto Titrator</td>
<td>01 No.</td>
</tr>
<tr>
<td>33</td>
<td>Dean and Stark Apparatus</td>
<td>01 No.</td>
</tr>
<tr>
<td>34</td>
<td>Flame Photometer</td>
<td>01 No.</td>
</tr>
<tr>
<td>35</td>
<td>Colorimeter</td>
<td>01 No.</td>
</tr>
<tr>
<td>36</td>
<td>Bomb Calorimeter</td>
<td>01 No.</td>
</tr>
<tr>
<td>37</td>
<td>Spectrophotometer</td>
<td>01 No.</td>
</tr>
<tr>
<td>38</td>
<td>Oxygen Cylinder with pressure regulating valve</td>
<td>01 No.</td>
</tr>
<tr>
<td>39</td>
<td>Vacuum Pump</td>
<td>01 No.</td>
</tr>
<tr>
<td>40</td>
<td>Air source</td>
<td>01 No.</td>
</tr>
<tr>
<td>41</td>
<td>Air Flow meter</td>
<td>01 No.</td>
</tr>
<tr>
<td>42</td>
<td>Desiccators</td>
<td>06 Nos.</td>
</tr>
<tr>
<td>43</td>
<td>Water Suction</td>
<td>04 Nos.</td>
</tr>
<tr>
<td>44</td>
<td>Filtration Flask with Buckner Funnel 100, 250ml, 500ml Heating Mental</td>
<td>20 Nos.</td>
</tr>
<tr>
<td>45</td>
<td>ASTM Distillation apparatus</td>
<td>06 no.</td>
</tr>
<tr>
<td>46</td>
<td>Viscometer and Constant temperature bath</td>
<td>01 No.</td>
</tr>
<tr>
<td>47</td>
<td>Apparatus for oil determination in given sample as per I P norm</td>
<td>01 Set of viscometer</td>
</tr>
<tr>
<td>48</td>
<td>Reid Vapor Pressure Apparatus with const. temp. Bath</td>
<td>01 No.</td>
</tr>
<tr>
<td>49</td>
<td>Ductility measuring meter</td>
<td>01 No.</td>
</tr>
<tr>
<td>50</td>
<td>Penetrometer</td>
<td>01 No.</td>
</tr>
<tr>
<td>51</td>
<td>Copper Corrosion Test Apparatus</td>
<td>01 No.</td>
</tr>
<tr>
<td>52</td>
<td>Crankcase Oil Dilution Apparatus</td>
<td>01 No.</td>
</tr>
<tr>
<td>53</td>
<td>Redwood Viscometer No. I & II</td>
<td>01 No. each</td>
</tr>
</tbody>
</table>

6. GEOLOGY
 Semester-V
 5S- Geology

UNIT II: Fold: Nomenclature or Parts, Classification in Genetic and Geometric, recognition of fold in field and map. Causes of folding. Joints: Classification in Genetic and Geometric, Significance of Joints.

UNIT III: Interior of the earth as reveled by Seismic waves. Isostasy – Airy’s Hypothesis, Pratt’s Hypothesis and Heisskinnan’s Hypothesis. Geosyncline in Definition, Classification and evolution.

UNIT IV: Continental Drift in Evidences of drift. Plate Tectonics in Types of plate margins, Causes of Plate Movement and Evidences- Sea Floor Spreading and Palaeomagnetism.

UNIT VI: Recharge and Discharge. Darcy’s Law and its validity, Cone of Depression, Influent and Affluent Seepages, Ground
water Provinces of India

PRACTICALS:
1. Use of Clinometer and Brunton Compass.
2. Problems on Dip, Strike, Thickness of Beds and width of outcrop maps.
3. Completion of outcrop problems for conformable series and unconformity.
4. Elementary problems on determination of Aquifer Parameters,
5. Plotting of Ground water provinces on outline map of India.
7. Morphometric Analysis from topographic maps.
8. Field Work.

PRACTICAL EXAMINATION:
The Practical Examination will be four hour duration and carries 50 marks. The distribution of marks will be as follows-

I. Problems on Dip, Strike, Thickness of Beds and width of outcrop maps. 6 Marks
II. Completion of outcrop maps 8 Marks
III. Problems on determination of Aquifer Parameters 6 Marks
IV. Plotting of Ground water provinces on outline map of India. 4 Marks
V. Water table contour maps and its interpretation for groundwater structure. 6 Marks
VI. Morphometric Analysis from topographic maps. 6 Marks
VII. Field Work. 4 Marks
VIII. Practical Record and Viva Voce 10 Marks
Total 50 Marks.

SEMESTER VI
6S- Geology

UNIT I: Stress ï Strain and deformation, Interrelationship of Stress-Strain and Time, Mohrï Circle, Determination of strain by using Initial Spherical Objects, Deformed Conglomerate and Bilateral symmetrical fossils.

UNIT II: Faults: Nomenclature or Parts, Classification ï Genetic & Geometric, recognition of fault in field and map. Causes of faulting. Foliation and Lineation ï kinds and origin.

UNIT III: Photo geology and Remote Sensing, Aerial Photographs and its types, Satellite Imageries. Methods of studying aerial photographs in the form of Stereo-pairs and Mosaic, Pocket and Mirror stereoscope, Overlap and Sidelap, Drift and Crab.

UNIT V: Prospecting and Exploration-Criteria and guides to ore search, Structural control of ore localization.

Sampling methods- Channel, Chip, Muck, Car and Drill hole sampling. Coning and quartering. Calculation of grade and ore reserves.

PRACTICALS:
1. Drawing of Sections and interpretation.
2. Interpretation of Aerial Photographs and Satellite Imageries.
3. Laboratory exercises in solving exploration related problems.
4. Exercises on calculation of grade and ore Reserves.
5. Field Work.

PRACTICAL EXAMINATION:
The Practical Examination will be four hour duration and carries 50 marks. The distribution of marks will be as follows-

I. Completion of Section maps (2 Nos.) 10 Marks
II. Interpretation of Aerial Photographs and Satellite Imageries. 10 Marks
III. Laboratory exercises in solving exploration related problems. 10 Marks
IV. Exercises on calculation of grade and ore Reserves 06 Marks
V. Field Work. 04 Marks
VI. Practical Record and Viva Voce 10 Marks
Total 50 Marks
Text Books for Sem V & VI :
22. Radhakrishnan N. General Geology, V.V.P Pub, Vellore.

B.Sc. Final Year, Semester-V

7: BOTANY

5S - BOTANY

PLANT PHYSIOLOGY AND ECOLOGY

Unit - I: Plant Water Relations
1.1 Importance of water to plant life.
1.2 Active and passive Absorption of water.
1.3 Ascent of sap - Root Pressure and Transpiration Pull Theory.
1.4 Transpiration - Types of transpiration, Stomatal movements, Mechanism of transpiration (Starch) sugar hypothesis), Significance. Antitranspirant, Guttation.
1.5 Mineral uptake - Active uptake - Career Concept, Passive up take - Ion Exchange.

Unit - II: Plant Water Relations
2.1 Imbibition , Diffusion, Osmosis, Plasmolysis.
2.2 Active and passive Absorption of water.
2.3 Ascent of sap - Root Pressure and Transpiration Pull Theory.
2.4 Transpiration - Types of transpiration, Stomatal movements, Mechanism of transpiration (Starch) sugar hypothesis), Significance. Antitranspirant, Guttation.
2.5 Mineral uptake - Active uptake - Career Concept, Passive up take - Ion Exchange.
Unit - II: Metabolism-
2.1 Photosynthesis - Introduction, Role of Light, Photosynthetic Apparatus and Pigments, Two Pigment Systems, Photophosphorylation, C3 and C4 cycle, CAM Pathway.
2.2 Respiration - Introduction, Mitochondria as a Respiratory centre, Types of Respiration - Aerobic and Anaerobic, Mechanism of aerobic respiration- Glycolysis, Kreb cycle, Electron transport system and Chemiosmotic ATP generation, Respiratory Quotient.

Unit - III: Metabolism and growth
3.1 Nitrogen Metabolism- Sources of nitrogen, Symbiotic nitrogen fixation, Role of Nitrate reductase.
3.2 Growth - Phases of growth, Growth curve, Physiological role of growth hormones (Auxins, Gibberellins, Cytokinins, Abscisic acid, and Ethylene).
3.3 Physiology of Senescence and Abscission.

Unit – IV: Plant responses
4.1 Photoperiodism - Concept of Florigen, Role of Phytochrome,
4.2 Vernalization- Concept and Significance.
4.3 Plant movement- Tropic (Phototropic and Geotropic) and Nastic (Epinasty, Hyponasty and Seismonasty)
4.4 Stress physiology- Concept, Types of stress, Water and Salinity stress.

Unit – V: Ecology and Environment:
5.1 Concept of environment, Concept and scope of ecology.
5.2 Ecological factors- Climatic- Light, Temperature and Water.
5.3 Atmosphere and its composition.
5.4 Edaphic factor- Process of soil formation, soil profile, soil biota and their role.
5.5 Ecological Adaptations - Morphological and Anatomical adaptation in Hydrophytes, and Xerophytes.

Unit – VI: Ecosystem:
6.1 Population Ecology- Natality and Mortality, Community characteristics ï Frequency, Density and Abundance
6.2 Ecological Succession - Hydrosere and Xerosere
6.3 Ecosystem ï Definition, Structure and Function,

LABORATORY EXERCISE :
Plant Physiology: Major experiment (Any Seven)
1. To study the effect of temperature and organic solvent on permeability of plasma membrane.
2. To study osmotic pressure of cell sap by plasmolytic method.
3. To determine water potential of plant tissue.
4. To determine the path of water (ascent of sap)
5. To determine the rate of transpiration by Ganongs photometer.
6. To determine rate of photosynthesis under varying quality of light and CO2 concentration.
7. To study the rate of photosynthesis in terrestrial plants with the help of Ganongs Photosynthometer.
8. Separation of chloroplast pigments by paper chromatography/solvent extraction method.
10. To determine R.Q. using different substrates.
11. To determine the rate of respiration by Ganongs respirometer.
12. To study antagonism of salts.
13. To study phenomenon of adsorption.
14. To study effect of IAA and Gibberellins on seed germination.
15. Test for secondary metabolites- Alkaloid, Phenolics, Tannin, Flavonoids and Lignin
16. To study Endo and Exo-osmosis by egg membrane osmoscope

Plant Physiology: Minor experiment- (Any Three)
1. To demonstrate fermentation.
2. To demonstrate exo and endosmosis
3. To demonstrate transpiration by Bell jar.
4. To demonstrate light is necessary for photosynthesis
5. To demonstrate anaerobic respiration in germinating seeds.
6. To demonstrate the evolution of CO2 in respiration.
7. To demonstrate the phenomenon of nastic movement with help of Mimosa pudica / or Biophytum sensitivum.

Ecology: Major experiment (Any Three)
1. Study of morphological and anatomical adaptations in hydrophytes ï Hydrilla, Eichhornia, Typha, Vallisneria and Nymphaea (any two)
Study of morphological and anatomical adaptations in xerophytes - *Asparagus, Nerium, Casuarina, Euphorbia, Cycas, Opuntia* (any two)

3. Study of community characteristics by quadrat method.
4. Determination of water holding capacity of different soils.
5. To determine the texture of different soils by sieve method.

Ecology: Minor experiment (Any Two)

1. To determine the porosity of soil.
2. To determine the transparency and temperature of water bodies.
3. Estimation of salinity of different water samples
4. Determination of pH of different soils and water samples by pH papers/ pH meter.
5. Study of meteorological instruments - Rain gauge, Hygrometer, Barometer

PRACTICAL EXAMINATION

Time: 4 Hours Marks: 50

Q. 1 - Physiology- major experiment-.
Q. 2 - Comment one Minor Physiology experiment-.
Q. 3 - Ecology major experiment.
Q. 4 - Ecology minor experiment.
Q. 5 - Viva voce
Q. 6 - Class record.
Q. 7 - Co-curricular Activity Report

Co-curricular Activity Report which mean the report on the activity
Such as Study Tour, Industrial visit to Research Institute, Excursion Tour to be submitted by the students at the time of practical examination.

Books Recommended:

Plant Physiology and Ecology:

2. H.N.Shrivastav.: Plant Physiology
3. Devlin R.M. : Plant Physiology

15. P.S.Gill: Plant Physiology, S.Chand & Co. New Delhi, Edition - Pradip’s, Botany
16. Purekar and Singh: Plant Physiology,
17. R. G. S. Bidwell (revised edn.)-Plant Physiology

Semester-VI

6S Botany

The examination in Botany of sixth Semester shall comprise of one theory paper, internal assessment and practical examination. Theory Paper will be of 3 Hrs. duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of 4 hours duration and carry 50 marks.

The following syllabi is prescribed on the basis of six lecturers per week and 6 practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question in every unit with internal choice for each of 12 marks & one compulsory question covering all the syllabus of Semester-VI (8 marks).

SEMESTER VI – MOLECULAR BIOLOGY AND BIOTECHNOLOGY

Unit-I : DNA the genetic material :
1.1 Historical account ð— Griffith’s Expt, Hershy and Chase Expt.
1.2 DNA Chemical composition and Double Helical model,
1.3 DNA replication in Eukaryotes;
1.4 DNA Packaging - Nucleosome and Solenoid
1.5 Satellite, Repetitive DNA and Transposable element in plants (AC-DS system)

Unit-II : Gene Structure and Expression -
2.1 Concept of gene, Fine structure of Gene
2.2 Gene Expression ð— Central Dogma, Types of RNA, Genetic code, Ribosome as a translation machine
2.3 Transcription in Eukaryotes ð— Mechanism of Transcription and RNA Processing
2.4 Translation in Eukaryotes.
2.5 Endomembrane system (Flow of Peptide)

Unit – III : Regulation of Gene Expression
3.1 Regulation of Gene Expression in Prokaryotes ð— Operon concept with special reference to Lac Operon
3.2 Regulation of gene expression of Eukaryotes ð— Britton Davidson Model
3.3 Protein Folding Mechanism and Structure (Primary, Secondary, Tertiary and Quaternary)
3.4 Protein Sorting ð— Targeting to proteins to organelles
3.5 Protein Trafficking

Unit-IV : Genetic Engineering -
4.1 Tools and techniques of recombinant DNA technology,
4.2 Restriction Enzymes ð— Nomenclature and Types
4.3 Cloning vectors ð— Plasmids, Phages, Cosmids
4.4 Gene Source- Genomic and c-DNA library
4.5 Gene Transfer Techniques
- Direct - (1) Chemical method, (2) Electroporation, (3) Gene gun method
- Indirect - Agrobacterium mediated gene transfer

4.6 Gene Amplification - _Polymerase Chain Reaction (PCR)_

Unit-V : Plant Tissue Culture

5.1 Basic aspects of plant tissue culture
5.2 Laboratory Requirement
 - Infrastructure,
 - Instruments (laminar air flow, autoclave, growth chamber),
 - Culture Media (MS Media),
 - Growth Hormone (Auxin, Cytokinin and Gibberellins)
 - Sterilization Techniques
5.3 Tissue Culture Technique - Cellular totipotency, differentiation and morphogenesis; Callus Culture; Micropropagation

Unit-VI : Applications of Biotechnology

6.1 Agriculture - Haploid plant production (Anther and Pollen Culture); Protoplast Culture and Somatic Hybridization; Transgenic Plant - BT Cotton, Synthetic seed. Salient achievements of crop biotechnology
6.2 Industry - Fermentation Technology- Bakery Products and Alcohol Productions.
6.3 Health Care - Edible Vaccines
6.4 Conservation - Cryopreservation, Genetically Modified Organisms: - Pros and Cons

LABORATORY EXERCISE

1) **Molecular biology (Major) (Any One)**
 1. Isolation of DNA by crude method
 2. Estimation of DNA by Diphenylamine method
 3. Estimation of RNA by Orcinol method
2) **Molecular biology (Minor) (Any One)**
 1. Demonstration of DNA Electrophoresis,
 2. Demonstration of double helical model of DNA
 3. Demonstration of AC-DS System in Maize kernel
 4. Demonstration of Centrifugation
3) **Biotechnology (Any Six)**
 1. Working Principle and application of Autoclave

PRACTICAL EXAMINATION

Time : 4 hours. Marks : 50

Que.1 : To perform given Molecular Biology experiment 15 Marks
Que.2 : Comment on minor molecular Biology Experiment 05 Marks
Que.3 : To perform given Biotechnology experiment 15 Marks
Que.4 : Comment on any one Biotechnology Experiment 05 Marks
Que.5 : Visit report 05 Marks
Que.6 : Class record/ and viva-voce 05 Marks

15. An introduction to industrial Microbiology- Dr. P.K. Sivakumar & Dr. M.M. Joe & Dr. K. Sukes- S. Chand publication.
16. Practical Biotechnology and plant tissue culture- Prof. Santosh Nagar & Dr. Madhavi Adhav- S. Chand publication.
17. Modern practical Botany (Volume-III)- Dr. B.P. Pandey- S. Chand publication.
18. Molecular Biology and Biotechnology- K.G. Ramawat & Dr. Shaily Goyal- S. Chand publication.
20. Botany for degree students - B.P. Pandey- S. Chand publication.

UNIT-I : General approaches of air pollution.
A. Sampling- Ambient and indoor, techniques. Analysis - Cox, Nox, Sox, Spm. Air quality standards, emission standards.
B. Integrated approach of air pollution control: City planning, zoning, source correction methods. National and International steps to control green house gases.

UNIT-II : Air Pollution control Techniques.
A. Control devices : Gravitational settling chambers; cyclone separators; fabric filters; electrostatic precipitators; wet collectors and scrubbers. Combustion-flaring, thermal incineration, catalytic oxidation. Control of other gaseous pollutants-odour, VOCs, oxides of sulphur and nitrogen emissions.
B. Auto Gaseous Emission Control - Control of auto-exhausts emissions. Use of after burners, catalytic converters, engine modifications; tuning, importance of good maintenance and driving habits. Alternative fuels.

Unit-III : Physico-chemical Waste Water Treatment Processes :
A. (i) Physical Process - Screening, grit chamber, aeration, oil and grease removal, sedimentation, coagulation, flocculation.
(ii) Chemical Process - Neutralization, chemical precipitation, adsorption, demineralization.
(iii) Biological Process - Activated sludge process, trickling filter, UASB (upflow anaerobic sludge blanket).
B. Sludge - Origin, nature, type, characteristics, treatment and disposal.

Unit-IV : Solid Waste Disposal
A. Management of municipal solid wastes (MSW): Sources, physical composition and characteristics.
B. Disposal methods; Open-dumping and sanitary landfills. Reduction, reuse and recycling of materials. Optional technologies for processing of MSW: Incineration, gasification, pyrolysis
UNIT-V: Biomedical and Radioactive Waste Treatment

A. Biomedical - Introduction, concept, classification, treatment and disposal (Pit, composting and Incineration).
B. Radioactive waste - Handling, storage and disposal.
C. Case Studies

UNIT-VI: Indoor Safety

A. Definition and concepts: Precautions in the processes and operations involving explosives, flammables, toxic substances.
B. Health Safety: Respiratory personal protective equipment (RPPE) & non respiratory personal protective equipment (NRPPE). Selection, use care and maintenance of non respiratory protective equipment. NRPPE: head protection, ear protection, face and eye protection, hand protection, foot protection and body protection.

Practical – 5

1. Preparation of windrose diagram of an area.
2. Determination of NOx, SOx in an ambient air.
4. Elemental analysis of sludge.
5. Estimation of organic matter from soil/sludge.
6. Determination of CO2 in the atmosphere by volumetric method.
7. Determination of energy content of plants by Bomb Calorimeter.
8. Determination of physical parameters of
 i) well water ii) Industrial or given type of effluent
 iii) River Water iv) Sea water
9. Determination of heavy metals (Fe/ Cr/Cu) by spectrophotometric methods from waste water.
10. Detection/ estimation of Cr (VI) in presence of Cr III
11. Determination of hydrocarbon from fuel gas using Orsat apparatus
12. Determination of Chemical Oxygen Demand value for industrial waste effluent.
13. Determination of NO2 from the atmosphere by colorimetric method using high volume sampler
15. Reduction of hardness by ion exchange method.
17. Determination of energy content in biomass (Bomb Calorimetry).
18. Estimation of Na+ and K+ in water / effluent samples using flame photometer

Note:
1. Visit to Drinking / effluent treatment plant.
2. Industrial visit

Distribution of practical Marks (Duration 6 hours)

<table>
<thead>
<tr>
<th>Practical</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>05</td>
</tr>
<tr>
<td>5.</td>
<td>05</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

Equipments: -
1. Flame photometer
2. Orsat Apparatus
3. COD Reflux assembly
4. High volume sampler
5. Bomb Calorimeter
6. Noise level meter
7. Lux meter.

Reference Books:
1. Environmental Sciences - Jackson and Jackson
2. Environmental Sciences - Tuckeer (1990)
3. Introduction to Environmental Chemistry A.K.De
8. Basic environmental technology : Jerry :A. Nathanson.
11. Air pollution theory by Crawford.
12. Land pollution , causes and control by Harrusson and Laxon.

Semester-VI
Environmental Science

6S : Environmental Science
ENVIRONMENTAL CONSERVATION & MANAGEMENT

Unit-I : A) Environmental Education: Definition, need, principles and objectives of environmental education, Types of environment education (Formal & Non Formal), stages of environment education, current status of environment education in India.

B) Environmental Education & Awareness: Concept of environmental awareness, methods of environmental awareness, role of environmental education in awareness programmes, Role of NGO’s in environmental education; environmental awareness thorough mass media.

Unit-II : A) Mining Environment: A)Types of mining, issues related with mining management, strategies for conservation of minerals.
Land Use Pattern, land degradation and land management.
B) Conservation of wetland, wastelands and mangroves

B) Biodiversity Conservation:
Need of conservation; National policy and goals; methods of biodiversity conservation - in situ conservation(sanctuaries, national parks and bio-sphere reserve); ex situ conservation(zoo, botanical gardens) convention on biological diversity (CBD) ,Biodiversity Act 2002.

Unit-IV : Role of National and International Organization in Environmental Protection :
A) IUCN, UNEP, Man and Biosphere Programme (M.B.P.), State Pollution Control Board . Ministry of Environment and Forest (MOEF).
B) Environmental Impact Assessment - Concept, scope and objectives, EIS, Public participation in EIA, advantages and disadvantages of Public participation.

Unit-V : A) Environmental Audit : Definition, purpose, advantages, general approach to environmental audit.

Unit-VI : A) Sustainable Development: Concepts and principles of sustainable development.
B) Statistical Methods : Mean, mode, media, standard deviation, tabulation of data, types of data, diagrammatic representation and graphical representation of data, regression analysis.

Practicals based on Papers :
A) Experiments on Biodiversity :
1) Determination of Shannon Weiner Species diversity index to terrestrial animal communities.
2) Determination of Margalef diversity index to terrestrial animal communities.
3) Determination of Kotho Species Deficit index to aquatic organisms.
4) Photographic submission of flora and faula.
B) **Experiments on Environmental Management:**
1) Characterization of wasteland soil.
2) Characterization of wetland water.
3) Characterization of wetland sediments.
4) Visit to nearby mine/ quarry
5) Survey of Environmental literacy in nearby community.

C) **Experiments on GIS & Remote Sensing:**
1) Study of Satellite Images or Arial Photographs.
2) Study and Applications of GPS
3) Marginal information of Topo sheet.
4) Indexing of Topo sheet.
5) To study the conventional signs and symbols from Topo sheet.
6) Interpretation of Topo sheet.
7) To study of conventional signs and symbols from weather map.
8) Interpretation of weather map.
9) Scale determination of aerial photograph.
10) Mapping of the land use patterns with the help of aerial photographs.
11) To study the change in land use pattern of an area with help of aerial photographs and survey if India Topo sheet.

D) **EXPERIMENTS ON EIA:**
1) Evaluation of impact of refuses on soil quality.
2) Impact of air pollutants on plants leaves.
3) To examine the effects biofertilizers versus chemical fertilizers on root ramification and plant growth.
4) To evaluate the impact of traffic density on environment.

Reference Books:
1) Environmental economics for sustainable development ⋯ Kumar
2) Ecology and economics: an approach to sustainable development ⋯ Sengupta
3) Environment, Development and sustainability ⋯ Bhaskar Naath
6) Biodiversity measurement and estimation ⋯ D. L. Hawks
7) Biodiversity conservation ⋯ Global agreements and national concerns. RAMSAR sites CBD, Quarantine, Regulation, National Forestry policy, Biodiversity Act, Wild life protection Act.
8) Environmental Problems and Solutions by Asthana D.K.
9) Environmental Management by GN.Pande
10) Pollution Management in Industries by R.K.Trivedi.
16) Environmental Crisis and Management: Sunit, Gupta Sarup and Sons Publishers, New Delhi.
18) Environmental Remote sending By: Saumitra Mukharjee.
20) Pollution control Acts, Rules and notifications issued there under: Central Pollution Control Board April. 1995.
24) Lal’s Commentevis on water, Air pollution laws along with the environmental (Protection) Act and rules 1986, 3rd Rd. 1992: Law Publisher India.
26) Remote Sensing and Image Interpretation:-Tomas M.Lillesand and
27. Introduction to Remote sensing:-James B. Campbell, Tylor and Francis Ltd.London.
37. EIA – A Biography. B. D. Clark, B. D. Bissel, P. Watheam

DISTRIBUTION OF PRACTICAL MARKS:
MAX.MARKS :50

Duration : 6 Hrs

Q.1 Any one Experiment on Biodiversity conservation.-10 Marks
Q.2 Any one Experiment on GIS OR Remote sensing. -10 Marks
Q.3 Any one experiment on EIA / Environmental - Management
Q.4 Class Record + Viva-Voce - 10 Marks
Q.5 *Co-Curricular Activity Report -

<table>
<thead>
<tr>
<th>Activity</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Record + Viva-Voce</td>
<td>10</td>
</tr>
<tr>
<td>Co-Curricular Activity Report</td>
<td>10</td>
</tr>
</tbody>
</table>

Total 50 Marks

Note: Visit to - 1) Wild life Sanctuary, 2) Industries, 3) National Park, 4) Meteorological Station.

*Co-curricular Activity Report which mean the report on the activity such as Seminar, Study Tour, Industrial visit to Research Institute, Group Discussion, Excursion Tour to be submitted by the students at the time of practical examination.

Required Instruments or Equipments for Practical Work :
1. Spectrophotometer
2. COD reflux assembly

Instructions for Project Work :

The objective of assigning of project work to student is to provide an opportunity to understand and appreciate environmental problems and explore probable solutions based on Empirical Studies. With a view to achieve these objectives. It is Expected that students in consultation with the concerned member of teaching faculty identifies an environmental problem and under take studies during specific period. While defining aim and the scope of the project, feasibility in terms of available time should be duly considered. It would be desirable that the initiation of project work begins in first session by under taking library work under the guidance of concerned teacher. The theme of project should be finalize in all respects at a convenient.

A student is expected to carry out studies as preplanned by going on periodic field visits and carry experimental studies. It is visualize that continuous to the teacher and consultations with him is the essence of successful work on completion of the field work and laboratory work, the

Semester-V

9 : SEED TECHNOLOGY

5S : Seed Technology(Vocational)

There shall be one theory paper of 80 marks and practical examination of 50 Marks for each semester. Duration of theory paper shall be 3 hours and practical examination shall be of 4 hours.

The syllabus in based on 6 lectures and 6 practical periods
Seed Pathology and Seed Entomology.

Unit-I: History of seed pathology
- Economic significance of seed borne diseases.
- Seed-borne fungi, bacteria, viruses and nematodes
 - Storage fungi and its impact on animal and human health
- Mechanisms of seed transmission
- Entry point of seed infection

Unit-II: Influence of environmental factors on seed borne diseases
- Seed crop management
- Seed treatment, procedures and equipments
- Quarantines of seed health testings
- Procedures of sampling for seed health testing

Unit-III: Methods of seed health testing
- Inspection of plants beyond the seedling stage
- Seed certification and tolerance limits of seed borne pathogens
- Seed act in relation to Seed borne diseases
- National and international cooperation in seed pathology

Unit-IV: Introduction
- Methods of insect classification
- Orders of insects of economic importance
- Insect body & appendages
- Life-cycle of insect
- Economic entomology: Important insect-pests of seed crops, their nature of damage and management
 1. Cereal-paddy, maize and sorghum
 2. Pulses-Kharif pulses—pigeonpeas, mung, Rabbipulses-chickpea, fieldpea linseed
 3. Oil seeds—mustard, castor, linseed groundnut
 4. Vegetables and dry fruits

Unit-V: Beneficial Insects
- Type of beneficial insects and their role in seed production
- Type of insect pollinators, their usage in crop pollination
- Honey bees, their social structure and management (bee keeping)
- Insect control
 - Definition and methods of insect control
 - Cultural, mechanical, physical, quarantine
- Chemical control/pre harvest sanitations spray
- Insecticide formulation and preparation of Spray Solution.
- Safe application of pesticide

Unit VI: Storage Entomology
- Types of insect pests and mites in storage - Nature of damage and losses caused and factors influencing them Sources and development of infestation, Detection of infestation.
- Fumigants and methods of fumigation Seed protectants and their impact on seed viability etc.
- IPM strategies for important pests Plant Protection Equipments
- Type of equipments & their principles Safe handling, maintenance and use of machines Rodents and their control in field and seed godowns

Practical

Seed Pathology
1. Demonstration and handling of stereobinocular microscope
2. Symptoms of important seed borne pathogens
3. Visual examination of dry seeds for disease symptoms
4. Examination of suspensions obtained from washings of seeds
5. Viability test-space germination test and tetrazolium test.
6. Detection of important seed-borne bacteria—various methods.
7. Detection of important seed borne viruses various-methods.

Seed Entomology
1. External morphology of insect, type of mouth parts, antenna and legs.
2. Identification of important storage pests, stages of insects.
3. Detection of seed borne insects and estimation of infestation
4. Plant protection equipments, their safe handling and use.
5. Handling of bees for pollination.
6. Collection and submission of stored product pests visit to warehouses and godowns.

Practical Examination:

Distribution of Marks

<table>
<thead>
<tr>
<th>Practical Exam</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis of Symptoms of seed-borne pathogens</td>
<td>10</td>
</tr>
<tr>
<td>To Calculate the viability of seed by tetrazolium test</td>
<td>10</td>
</tr>
<tr>
<td>Study of mouth parts, antenna and legs of given insect</td>
<td>05</td>
</tr>
<tr>
<td>Identify and describe the seed specimen & equipments A, B, C, D, E</td>
<td>10</td>
</tr>
<tr>
<td>Submission of field report</td>
<td>05</td>
</tr>
<tr>
<td>Submission of seed specimen and viva-voce</td>
<td>05</td>
</tr>
<tr>
<td>Record book</td>
<td>05</td>
</tr>
</tbody>
</table>

Books Recommended:

1. Seed Pathology Vol-I & II P. Naeergaard
2. Principles of Seed Pathology Vol-I & II V.K. Agarwal & J.B.Sinclair
4. Seed Technology - R.L. Agrawal
5. Introductory Mycology C.J.Alexopoulos
6. An introduction to fungi J.P. Srivastava
7. Systemic Fungicides R.W. Marsh
8. Fungicides in plant diseases control Y.L. Nene and P.N. Thapliyal
9. Destructive and useful insects by Metcalf and Flint
10. Insect Pollination of field crops by J.B. Free
11. Agricultural Entomology by A.S. Atwal
12. Plant Protection Equipments by O.S. Bindra

B.Sc. Part - III
Semester-VI

6S : Seed Technology(Vocational)

Seed Processing, Farm Management and marketing

Unit-I : Seed drying: Importance and advantage of seed drainage, moisture content recalcitrant orthodox-and methods of seed moisture measurement, theory of seed moisture measurement, theory of seed drying, specific gravity separators, adjustment of intendent disc and intendent cylinder separators.

Unit-II : Surface texture separation: The roll mill, parts of the machine, separating action and the adjustments, cleaning roll mills. Seed treatment: Seed treatment equipment, slurry treater, mist-o-matic seed treater, parts of the machine, construction and operation, labeling of treated seeds and related precautions, storage of treated seeds, machine operation, and seed users safety. Site selection for seed processing plant on a seed production farm. Layout of machines in a seed processing plant for efficient production and main movement, mechanical inquiry of seeds in post harvest phase, conservation of energy and production in seed processing, maintenance and repair of seed processing equipment. Seed conveyors and elevators, bucket elevators, belt conveyors, screen conveyors. Oscillating conveyors, pneumatic conveyors, difference between a specific gravity separators and oscillating conveyors installation of bucket elevator, computing the required height of bucket elevators capacity determination of bucket elevators.

Unit-III : Packaging of seeds, bager weigher, bag closing, labelling and main taining lot identity, lot numbers, seed pellets, handling and stacking, maintenance of seed processing records. Seed storage structures: construction, operation and maintenance, insulation, storage aeration, air conditioning, dehumidification and stacking, moisture and heat proofing of seed storage structures, seed storage management.

Unit-IV : Field of farm management, scope basic principles in farm management, decision making operation and control Decision making approaches, decision making based on production, cost and capital investment, cost analysis law of diminishing return, opportunity cost, most profitable combination of input and output.

Unit -V : Planning and management of crops, Building and machinery Important crops of India, concepts pertaining to various crop production operations viz tillage, irrigation, sowing plant protection, harvesting and threshing maintenance of
soil fertility, weeds and their control, mixed cropping, multiple cropping and dry land farming. Machinery selection and their management, determination of field capacity and field efficiency, machinery adjustments. Consideration in farm buildings implement shed, storage structures.

Unit -VI: Farm Business : Farm business analysis, Farm size, factors affecting profit and economic size of farm, Budget and Record Keeping : Farm budgeting, procedure and use, Farm efficiency measures, farm records and their use. Acquisition and Management of Land Labour and Capital Farm Surveys-Data Collection analysis. Marketing Basic concepts, supply and demand price equilibrium, seed transportation and storage cost and returns, cost of processing and packaging, marketing organization for seed marketing, seed markets in India, Structure and working. Seed market surveys, Projections of supply and demand for different kinds of seed in India-Seed pricing of Breeder/Foundation/ Certified Seeds.

Practicals : Seed Processing.
1. Visit to a seed processing and storage complex and familiarization with different machines.
2. Study of physical characteristics of different crop seeds and their shapes.
3. Determination of physical properties of seeds of different crops
4. Measurement of seed moisture content by direct and indirect methods of Dring.
5. Study of air screen cleaner cum grader
6. Study of specific gravity separator
7. Study of seed treatment machines
8. Study of seed packaging equipments.
9. Study of bucket elevator, screw conveyors and pneumatic elevators.

Seed farm management and marketing.
1. Identification of farm machines and their use
2. Determination of field capacity and field efficiency
B.SC. FINAL, SEMESTER-V
10 : ZOOLOGY

There shall be the following paper and practical for B.Sc. Part-III Semester V examination. The syllabus is based on 6 theory periods and six practical periods per week (Total 75-80 theory sessions and 25 practical sessions during the complete semester). There shall a compulsory theory paper of 3 hours duration, as stated below and a practical examination extending for five hours. Every examinee shall offer the following paper of 100 marks (80 for written examination and 20 marks for internal assessment) and a practical examination of 50 marks. Candidates are required to pass separately in theory and practical examination.

Theory -5 S-ZOOLOGY:
(ANIMAL PHYSIOLOGY AND ECONOMIC ZOOLOGY)

<table>
<thead>
<tr>
<th>Marks Allotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
</tr>
<tr>
<td>Internal assessment</td>
</tr>
<tr>
<td>Practical</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>

Paper 5 S-ZOOLOGY
(ANIMAL PHYSIOLOGY AND ECONOMIC ZOOLOGY)
Max. Marks - 100 Total Period - 75

UNIT I : Respiration:
Structure of respiratory organs: Gills and Lungs
Mechanism of respiration: regulation of ventilation in lungs, exchange of gases at respiratory surface, Respiratory pigments in animals: Haemoglobin, Haemocyanin, Haemerythrin, chlorocruorin. Transport of gases: O2 and CO2 transport, Neurophysiologic control of respiration,

Circulation:

UNIT II : Muscle Physiology:
Types of Muscles: striated, non-striated and cardiac muscles
E.M. Structure and Chemical Composition of striated muscle, Neuromuscular junction.
Mechanism of muscle contraction by Sliding filament theory
Physical and Chemical changes during muscle contraction: muscle twitch, tetanus, isometric and isotonic contraction, summation of Stimuli, all or none law, fatigue, rigor mortis.

Conduction of Nerve impulse, Resting potential, initiation and propagation of action potential, Saltatory transmission, Neurotransmitters (Acetylcholine, dopamine, GABA, Serotonin, Epinephrine, Nor-Epinephrine), Synapse and synaptic transmission

Chemical co-ordination: Endocrine system: Hormones and their physiological roles of-
Pituitary, Thyroid, Parathyroid, Adrenal, Islets of Langerhan's,
Hormonal disorders: Dwarfism, Gigantism, Acromegaly, Goiter, Myxoedema, Cretinism, Osteoporosis,

UNIT IV : Reproductive Physiology: Estrous and menstrual cycle, hormonal control of reproduction in males and female, Structure and physiology of mammalian Placenta.

Homeostasis and conservative regulation:
Osmoregulation and ionic regulation in aquatic animals. Osmoregulation in terrestrial animals Ammonotelism, ureotelism and uricotelism.
Thermoregulation in Poikilotherms and Homeotherms.

UNIT V : Agricultural Zoology: Economic importance of Insects
Beneficial insects : Spider, Mantis, Ladybugs, Damsel bug, Mealybug destroyer, Soldier beetle,
Green lacewing, Syrphid fly, Tachinid fly, Ichneumon wasp
and Trichogramma wasp.

Harmful Insects

- Stored food grain pests, their injuries and control
- Pests of Cotton, Sugarcane and Jowar. Damage and Control
- Economic importance of Rodents, Snakes, Owls and Bats
- Apiculture - Sericulture -

Unit VI: Aquaculture

Aquaculture: definition, scope, importance and present status in India.

Freshwater fish culture: types of fish ponds: Nursery, rearing and stocking, design and construction of fish pond, fertilizers used for fish development.

- Hatching Happas, Chinese Circular Hatchery, CIFE, Mumbai, hatching model, Induced breeding and hypophysation, Modern drugs used in fish breeding.
- Freshwater system: monoculture, polyculture, integrated aquaculture, cage culture, pen culture. Fish products and byproducts: Fish liver Oil, Fish body oil, Fish manure, Fish leather

Special Note : (Common for B.Sc.Sem-I & VI)

(i) Use of animals for practical purpose in this curriculum is subject to the conditions, under the Wild Life (Protection) Act 1972 and should abide by the prevention of cruelty to animals Act 1960. No any scheduled animal species should be used in the laboratory.

(ii) The research based project on animals should strictly abide by the rule as mentioned in para-6 of U.G.C. Notification No.F.14-6/2014 (CPP-II), dated 1st August, 2014, which state that

6.1 All institutions of Higher Education shall constitute Dissection Monitoring Committees (DMC) to ensure strict compliance of instructions relating to the use of animals for research purposes only;

6.2 The Head of the concerned department shall be the Convener and Chairperson of DMC. Two Senior faculty members of the concerned department, one faculty member of a related department from the same institution and one or two Faculty members of the concerned department from the neighboring institutions shall be members of DMC.

6.3 The tenure of DMC shall be two years and on expiry of a term, the DMC should be reconstituted wherein only the Convener and Chairperson (The Head of the Department) may continue for two or more terms if he/she happens to continue to be the Head of the Department. A vacancy arising during the tenure of DMC shall be filled with a faculty belonging to the respective category. The quorum for the meeting shall be 3 out of 6, where in at least one member from the neighboring institution must be present. The DMC shall meet at least once each semester/half year and approve/review alternative experimentation of animals for laboratory exercises.

6.4 It shall be the responsibility of the DMC to ensure that animals that are permitted to be used for dissections / experiments in the instructions herein are procured from ethical sources, and not removed from the wild, transported to the laboratory without stress or strain to the animals, if live, and anaesthetized appropriately if they are to be used in dissections.

6.5 The DMC shall ensure that the institution maintains appropriate records of procurement of animals, their transport, number of animals used, use of anesthesia/euthanasia etc.

6.6 The DMC shall be different from the Institutional Animal Ethics Committee (IAEC), under the purview of Committee for purpose of care and supervision of experimental animals (CPCSEA), Department of Environment and Forest, Govt. of India. However, the DMC shall not have powers to overriding the powers of IAEC. For animals covered by the IAEC, with standard operating procedures (SOPS) for IAECs prescribed by CPCSEA will apply.
Those Institutions which are already having Zoology museums should not procure museum specimens now onwards and should use charts / slides / models / photographs and digital alternatives in case of need. Those new institutions which are not having Zoology museum in their department should provide learning related to zoological specimens with the help of charts / slides / models / photographs and digital alternatives / and arrange visit of students to already established museums.

Practicals:
1. Detection of blood groups in human being.
2. Differential counts of blood.
3. Estimation of hemoglobin percentage with the help of haemometer.
4. R.B.C. count.
5. W.B.C. count.
6. Preparation of haemin crystals
7. Measurement of blood pressure.
8. Action of salivary amylase on starch.
9. Qualitative detection of nitrogenous waste products (Ammonia, urea, uric acid) in given sample.
10. Demonstration of kymograph unit, Respirometer through available resources.
13. Histological Slides of major organs of Respiratory systems, circulatory system, Nervous system, Different types of Muscles, Endocrine glands, testis, ovary.

Distribution of marks for practical examination:
- **Time:** 5 Hrs.
- **Marks**

<table>
<thead>
<tr>
<th>Practical</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Spotting (A-F)</td>
<td>12</td>
</tr>
<tr>
<td>b) Description and Comments on Topic from Unit V and VI</td>
<td>08</td>
</tr>
<tr>
<td>04. Class record duly signed by teacher in charge and certified by H.O.D.</td>
<td>05</td>
</tr>
<tr>
<td>05. Study tour report.</td>
<td>05</td>
</tr>
<tr>
<td>06. Viva - voce</td>
<td>05</td>
</tr>
</tbody>
</table>

REFERENCES
1. Prosser and Brown: Comparative Animal Physiology
2. Histological Slides of Respiratory systems, circulatory system, Muscles, Nervous system Endocrine glands, Gonads, placentae
3. Guyton: Physiology
4. Best and Taylor: Physiological basis of Medical practice
11. Stryer. L. Biochemistry Wiley International

B.Sc. Final, Semester-VI

ZOOLOGY

There shall be the following paper and practical for B.Sc. Part-III Semester VI examination. The syllabus is based on 6 theory periods and six practical periods per week (Total 75-80 theory sessions and 25 practical sessions during the complete semester). There shall a compulsory
A theory paper of 3 hours duration, as stated below and a practical examination extending for five hours. Every examinee shall offer the following paper of 100 marks (80 for written examination and 20 marks for internal assessment) and a practical examination of 50 marks. Candidates are required to pass separately in theory and practical examination.

Theory - 6 S-ZOOLOGY
(MOLECULAR BIOLOGY AND BIOTECHNOLOGY)

Marks Allotted

1) Written examination
 Internal assessment
 Practical:
 Total:

2) 50

Total: 150 Marks

Paper - 6 S-ZOOLOGY
(MOLECULAR BIOLOGY AND BIOTECHNOLOGY)

Max. Marks - 100 Total Period - 75

UNIT – I : Genetic material-definition, Experiments to prove DNA as genetic material: Griffiths transformation experiments with bacteriophage infections, Avery and co-workers experiments, and Hershey and Chase experiment. Chemistry and types DNA(A,B,Z)Mitochondrial DNA; Chemistry, types and function of RNA: mRNA, tRNA and rRNA and Non Genetic RNA.

UNIT – II : DNA replication: semi conservative method; experiment by Messelson and Stahl.

Concept of genes, one gene one enzyme hypothesis, one gene one Polypeptide theory; A brief account of Concept and action of cistron, split genes, overlapping genes, jumping genes, Genetic diseases: Spinocerebellar ataxia.

UNIT – III : Genetic code and its features, Protein synthesis-transcription and processing of mRNA, translation-different steps, Gene regulation: (promoter and operator), Operon models, and Lac-operon model of E.Coli. Genetic regulation in Eukaryotes-Britten Davidson Model.

UNIT – IV : Mutation: Definition-mutation theory of DeVries-different types of mutations, - molecular basis of mutation:

substitution and frameshift mutations, chromosomal aberrations-structural (deletion, addition, inversion and translocation), numerical (euploidy and aneuploidy). Natural and induced mutations-significance of mutations.

DNA repair process.

Polymerase chain reaction (PCR), Southern, Northern and Western blotting techniques, DNA finger printing.

UNIT – VI : Immunology: Introduction to immune system: Innate and adaptive immunity, Types and production of immune cells; Complement system.

Humoral Immunity: Antigen and haptens, Antibody: types function, and production.

Cell mediated immunity: T-cell receptors, T helper cell and lymphocyte activation

Role of cytotoxic T-cell..ELIZA Technique RIA.

Practicals:

1. Microtechnique scope and importance.
2. Preparation of fixatives - Alcohol, Acetone, Formalin, Bouin’s fluid, Carnoy fluid, Formal sublimate.
3. Collection of various tissues/organs from slaughter house for micro-technique
4. Preparation of Alcoholic grades, dehydration and clearing of tissues
5. Use and care of Oven
6. Embedding and block making, trimming of block.
7. Use and Care of different types of Microtome.
8. Honing and stropping Knives
9. Section cutting and spreading.
11. Staining of the sections, (Double Staining), mounting.
12. Camera Lucida. Use and Drawings
13. Oculomicrometer scale/ similar micro-measurements use
14. Introduction to models of PCR, Southern blotting through available resources.
16. Extraction of DNA by using salt, detergent and enzymes from natural sources from any animal tissue/plant material
17. Study of Operon models through available resources.
18. Application of DNA finger printing through available resources.

Distribution of marks for practical examination:

<table>
<thead>
<tr>
<th>Time: 5 Hrs.</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Microtechnique.</td>
<td></td>
</tr>
<tr>
<td>a) Trimming and Section cutting of the Paraffin blocks</td>
<td>05</td>
</tr>
<tr>
<td>b) Spreading of ribbons.</td>
<td>05</td>
</tr>
<tr>
<td>c) Staining of the given slide</td>
<td>10</td>
</tr>
<tr>
<td>c) Use of camera Lucida/ Ocular micrometer scales</td>
<td>05</td>
</tr>
<tr>
<td>02. Any one practical based on Sr.14 to 18 of the practical list</td>
<td>10</td>
</tr>
<tr>
<td>03. Permanent slides submitted by the examinee (5 Slides)</td>
<td>05</td>
</tr>
<tr>
<td>04. Class record duly signed by teacher incharge and certified By H.O.D.</td>
<td>05</td>
</tr>
<tr>
<td>05. Viva - voce</td>
<td>05</td>
</tr>
</tbody>
</table>

Total Marks 50

REFERENCES

23. AM. Pearson & TA Gillett (1996) Processed Meats,
24. W.J. Stadelman, V.M. Olson, GA. Shemwell & S. Pasch S.
25. Egg and poultry meat processing,
28. Elgert: Immunology understanding the immune system, John Willy & Sons, Inc. publication, New York.

B.Sc. Final year (Semester V)

11: STATISTICS

The examination in Statistics of fifth semester will comprise of one theory paper each, internal assessment and practical examination.
Theory paper will be of 3 hours duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of 4 hours duration and carry 50 marks.

The distribution of marks for practical will be as follows:
1. Practical Record 08 Marks
2. Practical Viva voce 12 Marks
3. Practical Problems 30 Marks

The following syllabi is prescribed on the basis of six lectures per week and six practical periods per batch per week. Each theory paper has been divided into six units. There shall be one question in every unit with internal choice (either or type) for each of 12 marks and one compulsory question covering entire syllabus of fifth semester of 8 marks.

5S-STATISTICS

Unit I : Statistical Quality Control
1.1: Importance of statistical methods in industrial research and practice.
1.2: Determination of tolerance limits.
1.3: General theory of control charts, causes of variation in quality, control limits, summary of out of control criteria.
1.4: Control charts for variables - X bar and R Chart.
1.5: Control charts for attributes-np charts, p-chart and c-chart.

Unit II : Acceptance Sampling Plan
2.1: Problem of lot acceptance, stipulation of good and bad lots, producer’s risk and consumer’s risk.
2.2: Single sampling plans and their OC functions.
2.3: Double sampling plans and their OC functions.
2.4: Concept of AQL, LTPD, AOQL, average amount of inspection and ASN function.

Unit III : Basic Econometrics
3.1: Theory of consumer behaviour.
3.2: Utility functions.
3.3: Indifference curves.
 3.3.1 Cardinal approach
 3.3.2 Ordinal approach
3.4: Partial elasticities of demand.
3.5: Income distribution Pareto Curve
3.6: Concept of Auto regressive models.

Unit IV : Sample Surveys
4.1: Sample surveys-Concept of population and sample, need for sampling, sampling unit and sampling frame.
4.2: Principal steps in sample surveys, census survey, advantages of sample survey over census survey.
4.3: Sampling and non sampling errors.
4.4: Types of sampling and limitations of sampling.
4.5: Simple random sampling, properties of SRS, methods of selecting a random sample, merits and limitations of SRS.
4.6: Concept of srswor and srswr, theorems on sample mean, sample variance and sample mean square, comparison of srswor and srswr.

Unit V : Stratified Random Sampling
5.1: Concept of stratified random sampling and its advantages.
5.2: Mean and variance of stratified sample mean.
5.3: Various allocations in stratified sampling and their corresponding sample sizes.
5.4: Comparison of various allocations with SRSWOR.

Unit VI : Systematic sampling and Cluster Sampling
6.1: Concept of systematic sampling with examples.
6.2: Mean and variance of systematic sample mean.
6.3: Comparison of systematic sampling with srswor and stratified random sampling.
6.4: Comparison of systematic sampling with srswor and stratified random sampling for a population with linear trend.

6.5: Concept of cluster sampling.

6.6: Mean and variance of cluster sample mean with equal cluster size.

References:

4. Damodar Gujarathi : Basic Econometrics
6. A.A.Walter : An Introduction to Econometrics

List of Practicals: (5S Statistics)

1. Construction of control charts for variables.
2. Construction of control charts for attributes.
3. Drawing of OC curve for single sampling plan.
4. Drawing of OC curve for double sampling plan.
5. Drawing a random samples by Random number method.
6. Estimation of population mean and variance using simple random sampling.
7. Estimation of population mean and variance using various allocations of stratified random sampling.
8. Estimation of population mean and variance using systematic sampling.
9. Estimation of mean and variance using cluster sampling.
10. Calculation of various elasticities of demand.
11. Utility functions.
12. Estimation of single equation linear regression model.

Note: The above practicals may be performed by using various statistical softwares.

List of equipments and instruments required for a batch of students in U.G. statistics laboratory.

1. Twelve digit desk model electronic calculators. 20
2. Biometrica tables Vol.I and Vol. II 02
3. Seven figure logarithmic tables 10
4. Statistical tables (compiled) 10
5. Personal computer with printer 05
6. Random number tables 10
7. Statistical poster and chart 02
8. Statistical softwares like SPSS, SAS, MS Excel and R

B.Sc. Final year (Semester VI)

The examination in Statistics of sixth semester will comprise of one theory paper each, internal assessment and practical examination. Theory paper will be of 3 hours duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of 4 hours duration and carry 50 marks.

The distribution of marks for practical will be as follows:
1. Practical Record 08 Marks
2. Practical Viva voce 12 Marks
3. Practical Problems 30 Marks

The following syllabi is prescribed on the basis of six lectures per week and six practical periods per batch per week. Each theory paper has been divided into six units. There shall be one question in every unit with internal choice (either or type) for each of 12 marks and one compulsory question covering entire syllabus of fifth semester of 8 marks.
6S-STATISTICS

Unit-I : Linear Programming
1.1: Convex sets and their properties.
1.2: Definition of general LPP, mathematical formulation of LPP with examples.
1.3: Examples of LPP, problems occurring in various fields.
1.4: Slack, surplus and artificial variables.
1.5: Graphical and simplex method of solving LPP.
1.6: Concept of duality of LPP with examples.

Unit-II : Transportation Problem (T.P.)
2.1: Definition and example of a T.P., mathematical formulation of a T.P.
2.2: Existence of feasible solution to a T.P., matrix form of a T.P., the transportation table, loops in a T.P.
2.3: The initial basic feasible solution, transportation problems with non degenerate and balanced cases only.
2.4: Methods to find initial basic feasible solution to a T.P.
 2.4.1: The North-West corner rule
 2.4.2: The Row Minima method
 2.4.3: The Column Minima method
 2.4.4: Matrix Minima method
 2.4.5: Vogel's Approximation method.

Unit III : Assignment Problem (A.P.) and Sequencing Problem and theory of games.
3.1: Definition and example of a A.P., mathematical formulation of a A.P.
3.2: Hungarian assignment algorithm.
3.3: Sequencing problem with n jobs and 2 machines.
3.4: Introduction to theory of games, two person zero sum games, the maximin - minimax principle.

Unit-IV : Analysis of Variance (ANOVA)
4.1 Introduction to ANOVA.
4.2: One way classification and its analysis.
4.3: Two way classification with one observation per cell.
4.4: Two way classification with multiple but equal number of entries per cell.

Unit –V : Design of Experiments
5.1: Introduction to design of experiments, need for design of experiments.
5.2: Fundamental principles of design of experiments:
 5.2.1: Replication
 5.2.2: Randomisation
 5.2.3: Local Control
5.3: Uniformity trials.
5.4: Analysis of Completely Randomised Design (C.R.D.).
5.5: Analysis of a Randomised Block Design (R.B.D.).
5.6: Comparison of C.R.D. with R.B.D. in terms of efficiency.

Unit –VI: Latin Square Design (L.S.D.) and Factorial Experiments
6.1: Concept and complete analysis of L.S.D.
6.2: Efficiency of LSD as compared with CRD and RBD.
6.3: Introduction of Factorial Experiments, its purpose, need and advantage.
6.4: Definition of contrast and orthogonal contrast.
6.5: Analysis of 2^2 and 2^3 factorial experiments, computation of main effects and interaction effects, Yate’s method (up to three factors).

References:
3.5: Definition of a saddle point, games with saddle points.

List of Practicals: (6S Statistics)
1. Solution of LPP by graphical method.
2. Solution of LPP by simplex method.
3. Computation of initial basic feasible solution to transportation problem by various methods.
5. Problems on sequencing problem with n jobs with two machines.
6. Problems on two-person zero sum games with saddle points.
7. ANOVA: One way classification.
8. ANOVA: Two way classification with one observation per cell.
9. ANOVA: Two way classification with multiple but equal number of observations per cell.
10. Analysis of completely randomised design.
11. Analysis of randomised block design.
12. Analysis of Latin square design.
13. Analysis of 2^2 and 2^3 factorial experiments arranged in RBD.

Note: The above practicals may be performed by using various statistical softwares.

List of equipments and instruments required for a batch of students in U.G. statistics laboratory.
1. Twelve digit desk model electronic calculators. 20
2. Biometrica tables Vol.I and Vol. II 02
3. Seven figure logarithmic tables 10
4. Statistical tables (compiled) 10
5. Personal computer with printer 05
6. Random number tables 10

7. Statistical poster and chart 02
8. Statistical softwares like SPSS, SAS, MS Excel and R

12: COMPUTER SCIENCE

5S-COMPUTER SCIENCE
RDBMS AND VISUAL BASIC

UNIT-I: Fundamental of DBMS: Architecture of a database system, data independence, database models; Relational Hierarchical, network; data dictionary.

UNIT-II: Relational Model: Relations, Domains and Attributes keys, E-R diagrams, Reducing E-R diagrams to tables, function dependency, Normalization Process, Normal forms: 1NF, 2NF, 3NF, 4NF, BCNF.

UNIT-III: Introduction to SQL: Components of SQL, data types, operators, DDL Commands: CREATE, ALTER, DROP, for tables & views. DML Commands: SELECT, INSERT, DELETE & UPDATE; Clauses: ORDER BY, GROUP BY and HAVING;

UNIT-IV: Introduction to Visual Basic: Visual programming, event driven programming, VB Environment: New Project window, property window, Form layout window, toolbar, menu bar, tool box, form window; Managing Control: Form properties, pointer tool, label control, text box, command button, picture box, image control, event procedure.

UNIT-V: Creating Menus: Application wizard for menu, menu editor, creating menu, adding code to menus, data types & variables.

Operators: Conditional operators, logical operators, control structures: If-else, Nested If-else, select case, goto, do loop, for loop, nested for loop.

UNIT-VI: Introduction to Internal Functions: MsgBox(), named constant, default buttons, specifying icons.

Input box(), title, caption; using check box and option button in form.

VB Programmes: Private and public procedure, passing data by reference and value, passing control as arguments.
Internal Functions: Numeric functions, data type functions, string functions, special functions.

Books Recommended:
1. An introduction to database system, C.J. Date - Narosa Publication.
2. Database Management System: Mujumdar and Bhattacharya - TMH.
3. Essential of Oracle - Tom Lewis.
4. Oracle the Complete Reference - Koch & Loney.
6. Mastering VB 6.0, Evangelous Petroustos, BPB.

Practicals:
Group A - Minimum 8 Practicals based on RDBMS.

AND

Group B - Minimum 8 Practicals based on VB.

Study Tour: Study tour may be arranged to Computer Industry or Software development, Organisation or Software Technology Park or IT Park.

Software: Software legal version based on syllabus.

Hardware: (1) A minimum 10 (Ten) Computer system per batch and with latest specification.

(2) Minimum 2 laser printer.

(3) Internet facility with Broad Band connections.

B.Sc. Final Computer Science
Semester-VI

6S-Computer Science
PL/SQL and Advanced Visual Basic

UNIT-I: Data Integrity, types of integrity constants.

Functions: Number Functions - AVG, MAX, MIN, SUM, COUNT, TO-NUMBER, GREATEST, LEAST, ABS, MOD, FLOOR, CEIL, TRUNC, SQRT, SIGN, SIN, COS, LOG, EXP.

Character Function: INITCAP, LOWER, UPPER, INSTR, LENGTH, LTRIM, RTRIM, LPAD, RPAD, SOUNDEX, DECODE.

Joins and Unions: Self, equi and outer join, unions and intersection.

UNIT-II: PL/SQL: Features and block structure, variables and constant, data types, control structure.

Cursor: Concepts of cursor, types, declaring, opening, using cursors, fetching data, closing a cursor, cursor attributes.

Transaction: Rollback, commit and autocommit, save point, rollback segment.

UNIT-III: Securities of Database: Users, creating users, roles, creating roles, types of privileges, GRANT and REVOKE command, data locks.

UNIT-IV: Dialog Box Control: Need for dialog box control, adding the dialog box control, producing the color dialog box control, handling the cancel button, producing the font dialog box, producing the open dialog boxes, producing file save dialog boxes, producing the print dialog boxes.

Mouse and Control: Mouse response, list box controls, combo box control, timer control, working with arrays, declaring arrays, multiple list boxes.

UNIT-V: Working with Forms: Form collections, accessing the form collection using the subscripts, the count property, uploading forms, placing text on forms, format with print, positioning the print method, multiple forms, placing tool bars on forms.

UNIT-VI: Working with Files: Open statement, file modes, locking the file, close statement, working with sequential access file, print# statement, input# statement, write# statement, working with random access file, put statement, get statement, defining user defined data types, file control, file related commands.

Books Recommended:
1. Database Management System, Mujumdar & Bhattacharya, TMH.
2. Oracle the Complete Reference, Koch & Loney, TMH.
3. Understanding Oracle, Perry and Latic, BPB.
4. Essential of Oracle 8, Tom Lewis.
7. Mastering VB 6.0, Evangelos Petroutsos, BPB.
8. Visual Basic 6.0 in 21 days, Greg Perry, Techmedia.

Practicals:
Group A - Minimum 8 Practicals based on Unit-I, II, III.
AND
Group B - Minimum 8 Practicals based on Unit-IV, V, VI.

B.Sc. Final Year
13: COMPUTER APPLICATION/ INFORMATION TECHNOLOGY
Semester – V

Paper: 5S: Programming in C#

UNIT-I: Introduction to C# : Evaluation of C#, characteristics of C#, application of C#, difference between C++ and C#, Introduction to C# environment : The .NET strategy, the origins of the .NET technology, the .NET framework, .NET, .NET languages, benefits of the .NET approach, C# and .NET.

UNIT-II: Overview of C#: Programming structure of C#, editing, compiling and executing C# programs, namespace, comments, using aliases for namespace classes, using command line argument, maths function.

UNIT-III: Operators and expression: arithmetic operators, relational operators, logical operators, assignment operators, increment and decrement operators, conditional operators, Bitwise operators, special operators, arithmetic expressions, evaluation of expression, precedence of arithmetic operators, type conversions, operator precedence and associativity, mathematical functions.

UNIT-IV: Methods in C#: declaring methods, the main method, invoking methods, nesting of methods, methods parameters, pass by value, pass by reference, the output parameters, variable arguments list, method overloading, Arrays: 1-D array, creating an array, 2-D array, variable size arrays, the system, array class, array list class, String handling: creating strings, strings method, inserting strings using systems, comparing strings, finding substrings.

UNIT-V: Structures and enumeration: structures, structs with methods, nested structs, difference between classes and structs, enumerations, enumerator initialization, enumerator type conversion, common program errors, Classes and Objects: Basic principles of OOPs, class, objects, constructors, static members, static constructors, private constructors, copy constructors, destructors, member initialization, the this reference, nesting of classes, constant members, read only members, properties, indexers.

UNIT-VI: Interfaces: Multiple Inheritance: defining an interface, extending an interface, implementing interface, interface & inheritance, explicit interface implementation, abstract class and interface, Operator overloading: overloadable operators, need for operator overloading, defining Operator overloading, overloading unary operators, overloading binary operators, overloading comparison operator. Delegates and Events: Delegate, delegate declaration, delegate methods, delegates instantiation, delegate invocation, using delegates, multicast delegates, events, Managing Console I/O operations: console class, console input, console output, formatted output, numeric formatting, standard numeric format, custom numeric format.
Text Books: -
1. Programming in C# : E. Balguruswamy
2. Mastering in C# : BPB Publication
3. Programming C# : TMH Publication
4. Programming C# : PHI Publication

Practical: Minimum 16 programs should be prepared on above syllabi.

13 : COMPUTER APPLICATION/ INFORMATION TECHNOLOGY
Semester – VI

6S: Computer Graphics, Multimedia and Animation

Unit-I : Overview of Graphics Systems: Refresh Cathode-Ray Tubes (CRT), Raster-Scan Display, Random-Scan Display, color CRT monitor, Flat-Panel Displays, 3D viewing system, stereoscopic and virtual reality system, raster scan system, graphics monitor and workstations, Input Devices, keyboards, mouse, trackball and spaceball, joysticks, image scanners, Touch panels, light pen, voice system

Unit-II : Output Primitives: Points and lines, line drawing algorithm, DDA algorithm, Bresenham’s Line Algorithm, parallel line algorithm, loading the frame buffer, line function, circle generating algorithm, Attributes: line Attributes, line type, line width, pen and brush option, line color, curve Attributes, color and grayscale level, color tables, grayscale

Unit-III : Areas fill Attributes, character Attributes, basic transformation, matrix representation, composite transformation: translation, rotation and scaling

Unit-IV : Introduction to Multimedia: What is multimedia, multimedia and hypermedia, overview of multimedia, software tools: music, sequencing and notation, digital audio, graphics and image editing, video editing, Animation, multimedia authoring, file format: GIF, JPEG, PNG, TIFF, EXIF; graphics, animation files, PS and PDF, Window WMF, Window BMP.

Unit-V : Multimedia Compression: IZW, DCT run length coding, JPEG MPEG, Hypertext, MHEG, Hypermedia, Document architecture, SGML, ooa Augmented and virtual reality and multimedia: Concept, VR devices, VR chair, CCD, VCR, 3D Sound System, head mounted display.

Unit-VI : Animation: Introduction, History of Animation, Anatomy study, Basic Sketching, Introduction to 2D animation, Animation with flash Ï Tweening, Motion tweening, Shape twining

Text Books: -
3. Multimedia in Practice: Technology and Application Ï Judith (PHI)
4. Fundamental of Multimedia by DREW-Pearson(Practical Approach)
5. Multimedia : Making it Work: T. Vaughan

Practical: Minimum 16 programs should be prepared on above syllabi.

B.SC. FINAL, SEMESTER-V

14 : COMPUTER APPLICATION (VOCATIONAL)

5S- COMPUTER APPLICATION (VOCATIONAL)

JAVA and ASP Programming

UNIT-I : Object Oriented Programming Paradigm, Basic Concepts of OOPs, Benefits and applications of OOPs.

UNIT-II: Java character set, keywords, Identifies, constants, variables, operators and expressions, separators, Data types, Type conversion and casting.
Java Statements: Assignment statements, control statements, structure of Java program.

Methods of Java programming: Application (main) and applet methods, simple Java program.

UNIT-III: Classes, defining a class, adding variables and methods, creating objects, accessing class members, constructors, the ‘this’ keyword, Garbage collection. The finalize() method, method overloading, static members, inheritance, method overriding, abstract methods and classes.

UNIT-IV: HTML: Introduction, Components, editor, entering Tags and attributes, Document structure tags: HTML, HEAD, TITLE, BODY tags; Text Formatting: Headings, BLOCKQUOTE, PRE, CODE, FONT tags; LIST tags: Unordered & ordered list, Table formatting tags; TABLE, TR, TH, TD tags; Anchor tags, Image tag.

UNIT-V: ASP: Introduction, Dynamic web pages, necessity, scripting languages: Server-side and client-side scripting, data types, variables, constants, operators, decision making and looping structure, functions, GET, POST.

UNIT-VI: Object: Introductions: Object terms - Instances & classes, properties, methods, events, encapsulation; Request object, request object collections: Form, Query string, Server variables collection; properties and methods; Response Object: Introduction, creating and managing output / information, content expiration and caching, redirection.

Books Recommended:
1. The Complete Reference JAVA2 by Herbert Schildt (Tata McGraw)
2. The Complete Reference JAVA by Patrik Noughton
3. Programming with JAVA - A Primer: By E. Balguruswamy (Tata McGraw)
4. Beginning ASP 3.0: Chris Ulman, David Buser, Jon Drukelt, Shroff Publisher & Distributors P.L.

Practicals:
1) Computer Lab: Minimum 16 practicals based on above syllabus.
2) Softwares legal versions based on syllabus.

UNIT-I: Array: Declaration and initialization of one dimensional and multidimension arrays, strings, different operations on arrays.

Packages: Introduction, Java API packages, creating accessing & using a package, adding a class to a package.

UNIT-II: Multithreading: Introduction, creating threads & multiple threads.

Error and Exception Handling: Introduction, Fundamental of exception handling, types of errors, types of exceptions, uncaught exception, using try and catch, multiple catch clauses, nested try statement, built-in exceptions, creating your own exception.

UNIT-III: Applet Programming: Applet basics, difference between applets and applications, writing applets, applet code, applet life cycle, creating an executable applet, and applet tag, running the applets.

UNIT-IV: Cookies: Introduction, creating, modifying and deleting. Applications Objects: Object Collection, object methods.

Session Object: Collection, properties and method.

UNIT-V: Global.asa file: Creating application event code and session event code, declaring object.

Error Handling: Types of error - Syntax error, logical error, ASP error, Debugging ASP script, using write and conditional tracing.

UNIT-VI: ASP Components: Server object, AD Rotator component, content linking component.

Introduction to Oledb and Odbc: Connection object and record set and field object command and parameter object.
Books Recommended:
1. Programming in JAVA : By S.S.Khandare (S.Chand)
2. Teach Yourself Java in 2 Hrs : By Sams.
3. Java for You : By P. Koparkar
4. OOP with C++ by E.Balaguruswamy.
6. Active Server Pages 3.0, N.Chare (Que)

Practical: Minimum 8 practical based on above syllabus.

Project: The student have to carry out a mini project work, with group of maximum 03 students at department and project report should be prepared of the same.

B.Sc. Final Year, Semester-V
15. ELECTRONICS

General Provisions/Instructions

Part A
(i) The Examination in Electronics of each semester shall comprise of one theory paper of 80 marks of three hours duration and internal assessment of 20 marks.
(ii) Theory paper of each semester shall comprise of six units. Each unit shall be completed in maximum 15 teaching periods of 48 minutes duration.
(iii) There shall six questions of twelve marks on each unit with alternate choice and One compulsory question (08 subquestions of 01 mark each) of 08 marks covering syllabi of all units (short answer type).

Part B
(i) The Practical examination of each semester of the B. Sc. (Electronics subject) shall be of 50 marks of 4 hours duration and shall be held at the end of each semester at the places as decided by the university.
(ii) Distribution of 50 marks assigned to practical for (Semester I to V) is as under-
 1. Experiment : 30 Marks (Construction, testing and performance)
 2. Practical record : 10 Marks
 3. Viva-voce : 10 Marks

 Total : 50 Marks

(iii) Distribution of 50 marks assigned to practical for semester VI is as under-

 1. Experiment : 10 Marks (Construction, testing and performance)
 2. Practical record : 10 Marks
 3. Viva-voce : 10 Marks

 Total : 50 Marks

(iv) Project will be given to a group of not more than four students.
(v) Teacher may adopt any innovative practice for demonstration of practicals on the aspects given.
(vi) College/Department may prepare laboratory manuals of experiments

Semester-V
5S-Electronics
Measuring Instruments

Unit I: Basic Instrumentation:
Block diagram of generalized instrumentation system, Concept of transducers (Primary and secondary, active and passive, analog and digital). Resistive transducer - potentiometer, Inductive transducer - LVDT, capacitive transducer (by changing distance), measurement of displacement using capacitive transducer (By changing dielectric).

UNIT II: Measurement of Temperature:
Thermocouple, Thermopile, Thermister, RTD, Total Radiation Pyrometer, IC DS 1621, IC LM34, IC LM35, Infrared Pyrometer,

UNIT III: Timer and PLL:
IC 555 timer: Block diagram and function of each block, application of 555 timer as astable, bistable and monostable multivibrator (construction, working and expression for time period).
PLL Block diagram and function of each block, concept of capture range, pull in time, lock in range, electrical
characteristics, applications of PLL as FM demodulator, AM detector and frequency synthesizer.

UNIT IV: Display, digital Instrument and recorder:

Seven segment, 14 segment, dot matrix, 16x2 LCD display, advantage and disadvantage, Digital instrument: Digital frequency meter. Digital voltmeter (Ramp type), Digital capacitance meter (Block diagram and function of each block).

Recorder: Classification, necessity of recorder, XY recorder, magnetic tape recorder.

Unit V: Sensors and Actuators:

Sensors: Definition, Methods of fabrication of Sensors, Types of sensors (Mechanical, Thermal, Optical, magnetic, chemical)

UNIT VI: Biomedical electronics:

Introduction, Type of electrode, EEG, EMG, ECG-block diagram and function of each block, X ray machine, instantaneous heart rate meter-systolic and diastolic blood pressure meter, EAR oximeter, pulse Oximeter, range gated pulse Doppler blood flow meter, Laser Doppler blood flow meter.

Books Recommended:
1. Electrical and electronics measurement and Instrumentation by A.K. Sawhney
2. Linear integrated Circuits by Ramakant Gaikwad
3. Biomedical instrumentation by R.S.Khandpur

Practicals: Minimum Ten experiments at least one on each of the following aspects.
1. LVDT, displacement measurement using C transducer, pot meter.
2. Temp measurement using thermister,RTD, LM34, LM35.
3. Astable, monostable, bistable using IC555.
4. FM demodulator, AM detector using PLL.
5. 16 x 2 LCD display, seven segment display and other display devices.
7. ECG, EMG, EEG, heart rate meter, oximeter etc.

Semester VI
6S-Electronics

Advance Microprocessor and Microcontroller

UNIT I: 8086 Architecture:

Block diagram of 8086 microprocessor, BIU and EU, operating modes of 8086, register of 8086-G.P.R, pointer and index register, segment register, concept of segmented memory, instruction pointer, status flag, pin diagram of 8086 microprocessor, physical and effective address.

UNIT II: Instructions and programming of 8086

Instructions: MOV, PUSH, POP, LEA, LDS, LES, Arithmetic & Logic Instructions. Addressing mode, 8086 instruction, Bus cycle. Programming: programs of data transfer, addition, subtraction, division, multiplication using various addressing mode.

UNIT-III: 8051 Microcontroller Architecture:

Microcontroller Introduction, Difference between Microprocessor and Microcontroller, block diagram of microcontroller, CPU, registers, flags, PSW, PC, Data Pointer, SFR, SP, Internal RAM/ROM, External memory, I/O ports, counter & timers, interrupts.

Unit-IV: Instruction set of 8051 and Programming:

Addressing mode, Instruction set: Data transfer, arithmetic, logical operation, JUMP, Loop and CALL instructions. Assembly language programming examples: simple data transfer, arithmetic, logical and single bit.

Unit-V: 8051 Interfacing & Application

Basics of serial communication, interfacing with RS-232C, SCON and PCON registers, interfacing a DAC / ADC and
waveform generation, interfacing to the 8255, interfacing LED, power reduction mode.

Unit-VI : Advance microcontroller:

Introduction to AVR, Arithmetic and logic Unit, program and data memories, downloadable flash program memory, SRAM data memory, general purpose register file, I/O register, EEPROM data memory, peripherals, Timers/Counters.

Books Recommended:
1) Microprocessor Architecture and application by Dougulous Hall.
2) Intel Microproceesor 8086 by Brey: PHI
3) The 8051 Microcontroller architecture, Programming & Applications- Kenneth J.Ayala (Penram international)
5) Microprocessor, microcontroller & applications- U. S. Shah (Tech-Max Publication Pune).
6) Programming and Customizing the 8051 Microcontroller- Mike Predko (TMH, New Delhi).

Practicals: Minimum Ten programmes at least five on each of the following aspects.
1. Programming on 8086 (using kit/PC)
2. Programming on 8051 and/or C language.
 AND
 Minor project based on µP 8085, 8086, µC 8051, AVR, ARM, Communication, sensors, power amplifier, code converters, Biomedical Electronics, Digital Electronics or any advance topic of Electronics (Construction and Report).

16 : BIOCHEMISTRY

Semester - V

The examination in Biochemistry will comprise of one theory paper and one practical. Theory paper shall be of three hours duration and shall carry 80 marks each. The internal assessment will carry 20 marks. The practical examination shall be of six to eight hours duration for one day and shall carry 50 marks.

The following syllabus is prescribed on the basis of 6 lectures per paper per week and six practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question on every unit with internal choice for each of 12 marks, one compulsory objective type question on whole syllabus of Semester-V carrying 8 marks.

Distribution of marks in practical shall be as follows:
1) Two short experiments - 20 marks (10 each)
2) One long experiment - 15 marks
3) Viva-voce - 08 marks
4) Class work and practical record - 07 marks

 Total - 50 marks

5S BIOCHEMISTRY

MOLECULAR BIOLOGY AND BIOTECHNOLOGY

UNIT-I : A) Basic Concepts of Genetic Information

a. Nucleic acids as genetic information carriers, experimental evidence e.g. bacterial genetic transformation, Hershey-Chase Experiment,

b. Central dogma of molecular genetics - current version, reverse transcription and retroviruses.

c. Salient features of eukaryotic, prokaryotic and viral genomes; highly repetitive, moderately repetitive and unique DNA sequences.

d. Basic concepts about the secondary structures of nucleic acids, 5’ → 3’ direction antiparallel strands, base composition, base equivalence, base pairing and base stacking in DNA molecule. Tm and buoyant density and their relationship with G-C content in DNA.

e. Watson and Crick model, A, B and Z types of DNA, major and minor grooves, chirality of DNA.

f. Structures and properties of RNA: Classes of RNA.
UNIT-II: DNA Replication

Transcription

Transcription in prokaryotes, RNA polymerase, promoters, initiation, elongation and termination of RNA synthesis, inhibitors of transcription, Reverse transcriptase, post-transcriptional processing of RNA in eukaryotes.

UNIT-III: Translation and Regulation of Gene Expression

a. Genetic code: Basic features of genetic code, biological significance of degeneracy. Wobble hypothesis, gene within genes and overlapping genes.
b. Mechanisms of translation: Ribosome structure, A and P sites, charges tRNA, f-met-rRNA, initiator codon, Shine-Dalgarno consensus sequence (AGGA), formation of 70S initiation complex, role of EF-Tu, EF-Ts, EF-G and GTP, non-sense codons and release factors, RF-1 and RF-2.
c. Regulation of Gene Expression in prokaryotes: Enzyme induction and repression, operon concept, Lac operon, Trp operon.

UNIT-IV: Basic Concepts of recombinant DNA technology & Nucleic Acid Sequencing.

a. r DNA technology, vectors.
b. Nucleic acid hybridization.
c. Sequencing: Restriction and modification system; sequencing of DNA and RNA.

UNIT-V: Basic Animal Biotechnology

a. History of Development of Cell cultures. Importance of growth factors of the serum, primary cultures, secondary cultures. Transformed animal cells and established continuous cell lines, commonly used animal cell lines their origin and characteristics. Growth kinetics of cell in culture.
b. Applications of animal cell cultures for studies on gene expression. Organ culture.

UNIT-VI: Basic Plant Biotechnology

b. In-vitro techniques in tissue culture. Induction of callus, ovary and ovule cultures, in vitro pollination and fertilization. Practical applications of genetic transformation in plants.

Practicals: -

A) Molecular Biology:
1) Extraction of RNA
2) Estimation of RNA by Orcinol method.
3) Extraction of DNA
4) Estimation of DNA by Diphenyl method.

B) Biotechnology:
1) Immobilization of yeast cells.
2) Production of alcohol by utilizing immobilized yeast cells.
3) Estimation of alcohol by Iodometric method.
4) Development of plant tissue callus.

List of Books Recommended:
2) Genetics by Sandhya Mitra (TMH Publication)
3) Gene VII by Lewis (Oxford)
4) Gene Structure and Expression by John D. Hawkins (Cambridge)
5) Plant Biotechnology S.Ignacimuthu S.J. (Oxford & IBH)
6) Gene Structure by Hawkins (Cambridge.)
7) Biotechnology: Application & Research edited by Paul Chere misinoff and Robert Ouellete (Technomic Publications)
8) An Introduction to Plant Tissue and Cell Culture Emkay Publication.
6S BIOCHEMISTRY
IMMUNOLOGY AND CLINICAL BIOCHEMISTRY

The examination in Biochemistry will comprise of one theory paper and one practical. Theory paper shall be of three hours duration and shall carry 80 marks each. The internal assessment will carry 20 marks. The practical examination shall be of six to eight hours duration for one day and shall carry 50 marks.

The following syllabus is prescribed on the basis of 6 lectures per paper per week and six practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question on every unit with internal choice for each of 12 marks, one compulsory objective type question on whole syllabus of Semester-VI carrying 8 marks.

Distribution of marks in practical shall be as follows:
1) Two short experiments - 20 marks (10 each)
2) One long experiment - 15 marks
3) Viva-voce - 08 marks
4) Class work and practical record - 07 marks

Total - 50 marks

UNIT-I: A) **Immunology**: Concept of immunity classification, humoral and cellular immunity.

B) **Antigen**: Definition, factors determining antigenicity, complete antigen, types of antigens.

C) **Antibodies**: Definition, structure, classification, properties and differences.

UNIT-II: **Antigen - Antibody reaction**: Definition, mechanism and application of precipitation, agglutination, complement fixation and toxin - antitoxin reaction, ELISA, RIA.

UNIT-III: A) **Monoclonal Antibodies**: Hybridoma technology.

B) **Complement**: Components, Classical Pathway, Alternative Pathway.

C) **Allergy and hypersensitivity**: Cell and coombs classification, definition and description of I-IV types of hypersensitivity.

UNIT-IV: **Clinical Biochemistry**:

A) Basic concepts of clinical biochemistry. Definition and scope of clinical biochemistry in diagnosis. Brief review of units and abbreviations used expressing concentration and standard solution. Quality Control.

UNIT-V: A) Collection and preservation of biological fluids (Blood, serum, plasma, urine and CSF).

B) Chemical analysis of blood, urine and CSF. Normal values for important constituents (in SI units) in blood (Plasma/serum) CSF and urine.

C) Clearance test for urea and Cretinine.

UNIT-VI: **Clinical Enzymology**:

A) Definition of functional and non-functional plasma enzymes, isozymes and diagnostic applications of isozymes. Enzyme pattern in health and diseases with special reference to plasma lipase, amylase, choline esterase, alkaline and acid phosphatase, SGOT and SGPT, LDH and CPK.

B) Hypo and Hyper glycemia, glycogen storage diseases, lipid malabsorption and statorrhea, albinism.

Practicals:

A) **Clinical Biochemistry**:

1) Glucose tolerance test
2) Liver function tests (SGPT/SGOT/Alkaline Phosphatase/Serum bilirubin)
3) Cardiac function tests (Serum Cholesterol, CPK, Triglycerides, LDL-Cholesterol, HDL-Cholesterol, LDH)
4) Kidney function tests (Blood urea, Serum creatinine, Serum Na⁺, K⁺)
B) **Immunology**

1) Blood Grouping
2) HBsAg (Hepatitis/B/C)
3) Pregnancy test

List of Books Recommended

1) Immunology by Roitt (Blackwell)
2) Cell and Molecular Biology: Darnell Lodish Baltimore.
4) Introduction to Practical Biochemistry by Plummer
6) Text Book of Biochemistry and Human Physiology by J.P.Talwar.
8) Text Book of Biochemistry by U.Satyanarayana.
9) Text Book of Biochemistry by Sucheeta Dandekar.
10) Practical Clinical Biochemistry by Hirowled Varle.

List of Instruments/Equipments/Glass-ware with specification required for B.Sc. 1st year Second yr. and Final (Biochemistry) Lab

Instruments/Equipments:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>Make</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Photoelectric Colorimeter</td>
<td>Erma Japan</td>
<td>Single cell with either Elico, Specol, Systronic, Aimil Instrumentation or any one filters.</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>pH Meter</td>
<td>Elico, J.Mitra</td>
<td>with glass electrode pH Scale from 0 to 14 Resistant to temp. change.</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Table centrifuge</td>
<td>"Remi Model R-8C" Tempo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Incubator</td>
<td>Tempo. Lab.Hosp. Yarco.</td>
<td>Double walled insulated with double Foors. (Inner glass door) Tempo.upto 600°C with thermostat. Sensitivity +0.50°C Size: 455x605x455 mm.</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>Hot-air Ovan</td>
<td>Yarco Tempo. Lab Hosp.</td>
<td>Double walled Thermostal temperature regulator. Size: 455x605x455mm.</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Refrigerator "Voltas" "Goderj" Allwyn Kelvinator or any make.</td>
<td></td>
<td>Double door with 300 Lit. capacity. having separate freezer.</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Serological water Bath "Tempo" Lab Hosp." Yarco or any make.</td>
<td></td>
<td>Double walled Thermoregulated. Mix. temp upto 800°C Size: 12x15x12 with cover.</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Magnetic Stirrer with Hot "Tempo" "Remi" Lab Hosp. or any make.</td>
<td></td>
<td>2 Lit. Capacity with 500 Wt. temp. regulated or any hot plate.</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>Metal Water Distillation plant "Remi" "Tempo" Lab Hosp.</td>
<td></td>
<td>2 Lits/Hr capacity with metal condensor.</td>
<td>1</td>
</tr>
<tr>
<td>No.</td>
<td>Item Description</td>
<td>Model</td>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Thin Layer Chromatography Assembly</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chamber of Glass Tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spreader Glass Plates Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass Plates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Hot Plate</td>
<td>"Tempo" Remi "Lab. Hosp." or any make.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Round 7 Diameter with 3 way control switch.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 watts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Mixer</td>
<td>"Remi" "Sumit" any make.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with 3 jars and timer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100gm. capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>One Pan Electric Balance</td>
<td>Umex Instraments works. VARANASI</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 gm. Capacity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy upto 4th decimal of gm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Cyclo-Mixer</td>
<td>"Vortex" "Remi"</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For one test tube only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Laboratory Microscope</td>
<td>"Olympus" or any make. scope with</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocular Medical micro- Sliding stage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Fingure pricking needle</td>
<td>"Auto Let" Japan</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Disposable Needler.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Haemometer Sahil's</td>
<td>GDR make or Top. with Comparator Glass, Tube and Hb pippet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Comparator Glass, Tube and Hb pippet.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Neubauer's Counting Chamber</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Bright rullings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>RBC Pipettes</td>
<td>GDR or England make or any make.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td></td>
<td>Nags.</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>WBC Pipettes</td>
<td>-do-</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td></td>
<td>25 Nags.</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>lab. Cell Counter</td>
<td>any make</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td></td>
<td>5 Nags.</td>
<td></td>
</tr>
</tbody>
</table>

GLASS-WARE:

<table>
<thead>
<tr>
<th>No.</th>
<th>Item Description</th>
<th>Model</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test Tubes</td>
<td>Borosil/Corning/Vensil</td>
<td>20ml capacity</td>
</tr>
<tr>
<td>2</td>
<td>Centrifuge</td>
<td>Borosil/Corning/Vensil</td>
<td>15ml capacity</td>
</tr>
<tr>
<td>3</td>
<td>Folin-Wu Tubes</td>
<td>Borosil/Corning/Vensil</td>
<td>25ml capacity</td>
</tr>
<tr>
<td>4</td>
<td>Nesseler's Tubes</td>
<td>Borosil/Corning/Vensil</td>
<td>25 ml capacity</td>
</tr>
<tr>
<td>5</td>
<td>Boiling Tubes</td>
<td>Borosil/Corning/Vensil</td>
<td>50ml capacity</td>
</tr>
<tr>
<td>6</td>
<td>K.T. Tubes</td>
<td>Borosil/Corning/Vensil</td>
<td>5 ml capacity</td>
</tr>
<tr>
<td>7</td>
<td>Burettes</td>
<td>Enkay or any make</td>
<td>50 ml capacity</td>
</tr>
<tr>
<td>8</td>
<td>Microburettes</td>
<td>Borosil/Enkay</td>
<td>10 ml</td>
</tr>
<tr>
<td>9</td>
<td>Pipettes</td>
<td>Borosil/Corning/Vensil</td>
<td>10 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with graduation zero at tip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(graduated)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(graduated)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with graduation zero at tip</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Brand</td>
<td>Capacity</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>10.</td>
<td>Measuring Cylinders</td>
<td>Corning/</td>
<td>1000 ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borosil/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vensil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>graduated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 ml graduated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 ml graduation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 ml capacity with graduation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 ml capacity graduation</td>
</tr>
<tr>
<td>11.</td>
<td>Standard Volumetric Flasks</td>
<td>Corning/</td>
<td>1 Lit. capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borosil/</td>
<td>500 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vensil</td>
<td>250 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 ml capacity</td>
</tr>
<tr>
<td>12.</td>
<td>Beakers</td>
<td>Corning/</td>
<td>1 Lit. capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borosil/</td>
<td>500 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vensil</td>
<td>250 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 ml capacity</td>
</tr>
<tr>
<td>13.</td>
<td>Conical Flasks</td>
<td>Corning</td>
<td>500 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borosil/</td>
<td>250 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vensil</td>
<td>100 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 ml capacity</td>
</tr>
<tr>
<td>14.</td>
<td>Reagent</td>
<td>Emkay</td>
<td>2 Lit. capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Lit. capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 ml capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250 ml capacity</td>
</tr>
<tr>
<td>15.</td>
<td>Dropping Bottle</td>
<td>Emkay</td>
<td>100 ml capacity</td>
</tr>
<tr>
<td>16.</td>
<td>Flat Bottom Round Flask</td>
<td>Emkay</td>
<td>500 ml capacity</td>
</tr>
<tr>
<td>17.</td>
<td>Funneis</td>
<td>Emkay</td>
<td>2.5" diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3" diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6" diameter</td>
</tr>
<tr>
<td>18.</td>
<td>Glass Tubings</td>
<td></td>
<td>1/2 mm.</td>
</tr>
<tr>
<td>19.</td>
<td>Glass Rods</td>
<td></td>
<td>1/2 mm.</td>
</tr>
</tbody>
</table>

MISCELLENIOUS:-

1. Propipettes Any make Able to hold any pipettes from 0.1 ml to 10 ml capacity. Rubber or Plastic. 5 Nos.
2. Test tube Tarson To hold 12 Tubes 20 Nos.
3. Burette --- Metal rod and base with tarson clamp. 20 Nos.
4. Rubber Crock --- To fit in conical flasks of all capacity. 20 each
5. Procelain 6x6" 20 Nos.
6. Mortor and Pestal --- 6" diameter 1 Nos.

B.SC. FINAL (SEMESTER-V)

17 : MICROBIOLOGY

The examination shall comprise of two theory papers, one in each semester and one practical in each Semester. Each theory paper will be of 3 hours duration and carry 80 marks. The internal assessment will carry 20 marks. The following syllabi is prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper have been devided into 6 units. There shall be one question on each unit, with internal choice and for each of 12 marks and one compulsory question covering all the syllabus of semester V(8 marks).

5S MICROBIOLOGY
(Environmental Microbiology and Bioinstrumentation)

Unit-I : Microbial Associations and Air Microbiology

A. **Microbial Associations:** Definition and examples of positive (Mutualism, Commensalism, Synergism), negative (Antagonism, Competition, Parasitism) and neutral association.
B. Air Microbiology
 a) The atmosphere and its layers.
 b) Different types of microorganisms in air.
 c) Techniques for microbiological analysis of air:
 i) Solid impingement devices
 ii) Liquid impingement devices.
 d) Airborne diseases: Etiology, symptoms and prevention.
 e) Control of microorganisms in air.

Unit II: Microbiology of Soil.
 a) Microorganisms in soil.
 b) Rhizosphere.
 c) Decomposition of plant and animal residues in soil.
 d) Definition, formation, function and microbiology of humus and compost.
 e) Biological Nitrogen fixation: Type of nitrogen fixing microorganisms, factors affecting and mechanism of symbiotic and non-symbiotic nitrogen fixation. Process of nodulation, nitrogenase complex, recombinant DNA and nitrogen fixation, legume inoculants.
 f) Cycles of elements in nature:
 i) Carbon cycle: CO₂ fixation, organic carbon degradation.
 iii) Sulphur cycle
 iv) Phosphorus cycle.
 v) Biofertilizers, biological pest control.

Unit III: Water Microbiology
 a) Planktons: Definition, types, factors affecting growth of planktons, methods of enumeration, beneficial and harmful activities of planktons.
 b) Control of plankton problems
 c) Eutrophication and its control.

Unit IV: Assessment of Water Quality and Treatment
Bacteriological analysis of water:
 i) Significance of bacteriological analysis of water.
 ii) Collection and handling of water sample from various sources.
 iii) Indicators of excretal pollution.
 iv) Multiple tube dilution technique, MPN.
 v) IMViC classification of coliform.
 vi) Membrane filter technique for coliform and faecal Streptococci.
 vii) ICMR and WHO Bacteriological standards of drinking water.

Unit V: A) Water Treatment
 a) Self purification of water: Various zones and factors responsible for self purification.
 b) Treatment of water: Aeration, Coagulation, Flocculation, Sedimentation and Filtration.
 c) Slow and Rapid sand filters: Construction, mechanism of filtration, differences.
 d) Methods of chlorination: Plain, super chlorination, ammoniacal chloride treatment, Break-point chlorination

B) Waste Water Treatment
 a) Aims of sewage treatment, composition of sewage.
 b) Municipal sewage treatment plant.
 c) Preliminary treatment (seiving and Grit chamber)
 d) Primary treatment (sedimentation)
 e) Secondary treatment (Aerobic)
 i) Trickling filter
 ii) Activated sludge process
 iii) Oxidation pond
 f) Anaerobic sludge digestion
g) Domestic sewage treatment by septic tank and Imhoff tank.
h) Concept of COD, BOD.
i) Outline of bio-gas production

Unit VI: Bio-Instrumentation

a) Spectroscopy - Definition, Principle, types (UV&IR) & its applications.
b) Electrophoresis - Definition, Principle, types (Paper&Gel) & its applications.
c) Chromatography - Definition, Principle, types (Paper&TLC) & its applications.
d) Isotopic Tracer Techniques - Definition, Principle & applications.

Microbiology Practicals.

 a) Standard plate Count.
 b) Multiple tube dilution technique (MPN for Coliform)
 c) IMViC test for coliform
 d) Multiple tube dilution technique for faecal strepto cocci.
 e) Membrane filter technique for coliforms & faecal streptococci.
 f) BOD estimation.
 g) Isolation of Bacteriophage from Sewage.
 h) Determination of Chlorine demand and residual chlorine.

2. Study of Soil Microbiology
 a) Enumeration of Soil microorganisms.
 b) Isolation of Azotobacter from Soil.
 c) Isolation of Rhizobium from Soil
 d) Isolation of Antibiotic producers from soil

3. Effect of Ultra-violet/Filtration on micro-organism present in water
4. Separation of amino acids and sugars by paper chromatography.

Distribution of marks for Microbiology practical Examination:

1. Major Experiment - 15 marks
2. Minor Experiment - 10 Marks
3. Viva Voce - 10 marks
4. Spotting - 10 marks
5. Laboratory Journals - 05 Marks

Total - 50 marks

List of Reference Books for 5S Microbiology:
1. Introduction to Soil Microbiology : Alexander Martin
2. Soil Microbiology : Subbaroa N.S.
3. Introduction to environmental Microbiology: Mitchell, Ralph
4. Sewage & Waste treatment : Hammer
5. Water Pollution : Zajic J.E.
6. Water Pollution Microbiology : Mitchell R.
7. Air Pollution : Perlins H.L.
8. Aquatic Microbiology : Stainner & Shewan
9. Introduction to Waste Water Treatment processes: Ramalhr R.S.

B.SC. FINAL (SEMESTER-VI)

6 S. MICROBIOLOGY

The examination shall comprise of two theory papers, one in each semester and one practical in each Semester. Each theory paper will be of 3 hours duration and carry 80 marks. The internal assessment will carry 20 marks. The following syllabi is prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper have been devided into 6 units. There shall be one question on each unit, will internal choice and for each of 12 marks and one compulsory question covering all the syllabus of semester VI(8 marks).
(Industrial Fermentation, Food Microbiology and Metabolism)

Unit- I : Fermentation in General.

a) Definition and scope of Industrial microbiology and biotechnology.
b) Important classes of industrial microorganisms.
c) Fermentation :- Definition and types (batch and continuous, aerobic and anaerobic, surface and submerged fermentations)
d) Production strains
e) Screening :- Definition, Primary screening (crowded plate technique, auxonography, enrichment culture technique, use of indicator dyes), secondary screening.
f) Scale up process :- Definition and significance.
g) Inoculum buildup : Spore and vegetative inoculum.
h) General layout of fermentation plant :- Fermentation equipment and its uses.
i) Raw materials :- Composition and uses. Saccharine, starchy, cellulose raw materials, hydrocarbon and vegetable oils, nitrogenous material (corn steep liquor).
j) Antifoam agents.
k) Sterilization of media :- Batch and continuous sterilization.
l) Detection and assay of fermentation products.

Unit- II : Industrial Productions I:

Microorganisms, raw material, inoculums buildup, fermentation conditions, recovery, uses and mechanism of the following products.
a) Ethyl-alcohol : From molasses and waste sulphite liquor.
b) Beer.
c) Wine (Red table and White table).
d) Acetone- Butanol from corn.
e) Citric acid
f) Vinegar- Fringâ€™s process

Unit- III : Industrial Productions II:

a) Bakerâ€™s yeast : From molasses, Definition of compressed and active dry yeast.
b) Single cell protein : From bacteria.
c) Penicillin.
d) Amylase : Bacterial and fungal.
e) Vitamin B12.

Unit-IV : Microbiology of Milk

a) Definition
b) Composition and types of milk.
c) Sources of microorganisms in Milk.
d) Types of microorganisms in milk.
e) Pasteurization of milk : LHT, HTST, UHT. Phosphatase test.
f) Grades of milk.
g) Concentrated milk and milk powder.
h) Preparation of fermented milk products, butter and cheese.

Unit-V : Food Microbiology

a) Sources of contamination of fresh food.
b) Microbial spoilage of foods.
c) Preservation of foods :- Low and high temperature, dehydration, high osmotic pressure, chemical preservation, radiations and canning.
d) Fermented foods : Idli, pickles and sauerkraut.
e) Food poisoning : Food infection and food intoxication.
f) Indicators of food contamination as per WHO.

Unit VI : Enzymology and Metabolism

A Enzymology :

a) Nature and Definition.
b) Classification and nomenclature of enzymes.

c) Terminologies used in enzymology: - Enzyme, active site, substrate, co-enzyme, cofactors, prosthetic group, poloenzyme, apoenzyme, activation energy, isoenzyme, allosteric enzyme, inhibitors, immobilised enzymes.

B Metabolism:

a) General strategies of metabolism.
b) EMP pathway, TCA cycle.
c) Oxidative phosphorylation and Electron transport chain.

Microbiology Practicals:

1. A) Microbiological Examination of milk:
 a) Plate count
 b) Methylene blue reduction test (MBRT)
 c) Phosphates test
 d) Test for coliform bacteria
 e) Estimation of fats in milk
 f) Milk testing for Adulteration

B) Demonstration of microbes in Curd.

2. A) Laboratory scale production, recovery and quantitative estimation of following products:
 a) Ethyl alcohol. b) Citric Acid c) Amylase
 B) Immobilisation of Yeast.
 C) Production of Curd/ Pickle/ Cheese by microorganisms
 D) Production of wine from grapes/ other raw material

4. Microbiological Examination of Vegetables, fruits and Fast Foods by
 a) Plate Count
 b) Test for Coliform bacteria.
 c) Yeast & Molds.

Distribution of marks for Microbiology Practical Examination:

1. Major Experiment - 15 marks
2. Minor Experiment - 10 marks
3. Viva Voce - 10 marks
4. Spotting - 10 marks
5. Laboratory Journals - 05 Marks

Total - 50 marks

List of Reference Books for 6S Microbiology:

1. Food Microbiology : Fazier W.C. & Westhoff D.C.
2. Fermented Foods (Vol.7) : Rose A.A.
3. Industrial Microbiology : Prescott S.C. & Dunn C.G.
4. Industrial Microbiology : Miller B.M. & W. Litsky
5. Industrial Microbiology : A.H. Patel
7. Industrial Microbiology : Casida L.E.
8. Principles of Fermentation : Stanbury, Peter F. & Technology Allan. Whitaker
9. Outlines of Diary Bacteriology : Sukumar De
10. Modern Food Microbiology : Jay, Mames M.
13. Dairy Microbiology : Foster Etal
14. Industrial Microbiology : Rose

BOOKS RECOMMENDED FOR PRACTICALS:

3. Microbiological Methods : Collins
Unit III: Cereals and legumes processing

Rice: types, composition, processed rice products (flaked, expanded & puffed rice)

Corn: types of corn, dry wet milling of corn. Starch & its conversion products. Processed corn products (popped corn, corn flakes etc.

Legumes: composition & properties of legumes, milling of different legumes. Sweet & savoury products from legumes in India.

Sprouted grains, palatability & Nutritional quality.

Unit-IV: Oil and fat processing;

Importance of processing. Sources, chemical composition, physical & chemical properties, functional and nutritional importance of dietary fats & oils, Processing of oil seeds for direct use & consumptions, processing of refined oils hydrogenation.

Unit-V: Bakery & confectionary:

Confectionary products: Hard boil candies, toffees, chocolates etc. Ingredients, equipments & process, product quality parameters.

Unit-VI: Food additives & food safety: Introduction, definition, need of additives, types of additives like antioxidant, colouring agents, flavours, natural & synthetic, flour improver,
leavening agents, nutrient supplements non-nutritive sweeteners,

Speciality foods; Scope, importance on speciality food, health food, functional foods, infant food & baby food fortification & supplementary foods.

Practical: (semester V)
1) Carry out preservation of certain vegetables by dehydration.
2) Study the rehydration characteristic of dried vegetables.
3) Perform osmotic dehydration of certain fruits & vegetables by sugar & salt solution.
4) To determine the water absorption capacity of the wheat flour / Maida.
5) Assessment of market sample of wheat, rice & Pulses for conforming some PFA specifications
6) Storage studies of cereal & legumes grains.
7) Determination of gluten content in wheat flour.
8) Adulteration of edible fats & oils
9) Preparation of Bread & its assessment of sensory quality.
10) Preparation of cake & its assessment of sensory quality.
13) Preparation of cookies & its assessment of sensory quality.

The distribution of marks in practical shall be as follows:
A) Two short experiment - 20 marks (10 Each)
B) One long experiments - 15 marks
C) Viva voce - 10 marks
D) Practical records - 05 marks

Total - 50 marks

Book Recommended:
1) Food Science 3rd edition, B. Srilakamih, New Age International publication.
3) Preservation of fruits & vegetables, Girdhari Lal, G. S. Siddappad & G. L. Tandon, Publication & Information Division Indian council of Agricultural Research.
4) Outline of food Technology, Harry W. Volonesecke, Agrobios.
6) Laboratory Techniques in Food analysis, D. person
9) Food Science 5th edition; Norman N. Potter; CBS
10) Fundamental of foods & Nutrition by R. Mudambi & M. V. Rajgopal
12) Food Microbiology by Adams & Moss
13) Industrial Microbiology by Prescott & Dum

B.Sc. Final (Semester VI)
6S. Food Science

Food Processing : II

Unit-I : Milk & milk products

Introduction; chemical composition, nutritional importance of milk and milk products. Fluid Milk: Testing quality, cooling, storage & transportation of liquid milk

Standardization and or processing (pasteurization, sterilization), Storage, packaging and distribution of liquids milks

Milk Products: composition, methods of preparation & production, quality or grading parameters, shelf-life of cream, butter & ghee, evaporated & condensed milk, skimmed, whole & instant milk powders

Ice-creams, fermented milk (curd, yogurt etc.) Milk products (cheeses, butter milk, lassie etc.) other milk products (khoa, casein, whey proteins) Milk and milks product based, sweetmeats (butfi, rasogolla, milk, cake, kalakand, etc.)
Unit-II: Fruits & vegetable processing:
Current status of production & processing of fruit and vegetables

Jam, jelly, & marmalades; dried fruit, soup mixture; sauces & ketchups; puree & pastes; chutneys, & pickles.

Unit-III: Poultry, Meat & Fish processing:
Nutritional, safety/health & hygienic considerations.

Egg: structure, composition, nutritional & functional characteristic of egg, grading spoilage, preservation of egg, solid products through drying & freezing.

Fish: types, care in handling processing of fish, freezing, canning, salting & drying of fish.

Unit-IV: Beverages:
Introduction, Importance, Types of beverages, classification Example, composition, (coffee, cocoa, & chocolate, tea, its processing, composition, soft drinks, its ingredients, different beverages, alcoholic beverage (wine, beer, etc.), non alcoholic beverages, mineral water, carbonated, non beverages, and their processing methods.

Unit-V: Traditional and functional foods:
Fermentation; basic concept of fermentation, dairy base fermented products, and its importance.

Production of bakers yeast, food yeast, wine, beer, vinegar, organic acid (citric acid & lactic acid)

Oriented fermented products, soya sauce, pickles, fermented milk, cheeses.

Indian traditional sweet, papads, idli, dosa, dhokla etc.

Unit-VI: Spices:
Introduction, Method of classification, List of spices, sources, Medicinal importance, composition, properties of spices (antioxidant)

Role of spices in cooking, preparation of different masalas & keeping quality

Practical: Semester VI
1) Preservation of fruits and vegetables by pickling
2) Preparation of squash
3) Shelf life study of egg by using different preservation methods.
4) Determination of quality of milk (Lactometer, pH & acidity, fat content, Specific gravity
5) Preparation of certain dairy products (khoa, paneer, cream, shikhand etc.)
6) Preparation of tomato ketchup & its preservation.
7) Preparation of tomato purr & its preservation.
8) Preparation of pickles. (lemon, mango, onion, amla).
9) Preparation of jam & its preservation.
10) Preparation of Jelly & its preservation.
11) Preparation of squash & its preservation.
12) Preparation of different types of measles.

The distribution of marks in practical shall be as follows:
A) Two short experiment - 20 marks (10 Each)
B) One long experiments - 15 marks
C) Viva voce - 10 marks
D) Practical records - 05 marks

Total - 50 marks

Book Recommended:
1) Food Science 3rd edition, B. Srilakhami, New Age International publication.
3) Preservation of fruits & vegetables, Girdhari Lal, G.S. Siddappad & G.L. Tandon, Publication & Information Division Indian council of Agricultural Research.
4) Outline of food Technology, Harry W. Volonesecke, Agrobios.
6) Laboratory Techniques in Food analysis, D. person
7) Nutrition & Dietetics 2nd edition, Shubhangini A. Joshi; Tata
UNIT II: GENE MANIPULATION AND EXPRESSION
 a) Methods of gene transfer: Transformation, transduction, electroporation, microinjection.
 b) DNA sequencing: Maxam and Gilbert technique, di-deoxynucleotide method, DNA chips.
 c) Polymerase Chain Reaction.
 d) Genomic DNA library, cDNA library.
 e) Identification of clones: Colony hybridization.

UNIT III: GENETIC TECHNIQUES IN STRAIN IMPROVEMENT:
Mutation and selection of different types of mutants e.g. Auxotrophic, antibiotic resistant, analogue-resistant mutants. Mutants resistant to feedback effect and toxic compounds. Isolation of revertant mutants (Ames Test)

UNIT IV: HEALTH CARE INDUSTRIAL PRODUCTS
 a) Production of hormones- Insulin
 b) Production of interferon
 c) Production of vaccines- Recombinant Hepatitis vaccine.
 d) Hybridoma technology & monoclonal antibodies.
 e) Gene therapy.
 f) SCP (Single Cell Protein)

UNIT V: INDUSTRIAL PRODUCTS FROM ACTINO MYCETES
 a) Primary metabolides: Enzymes, vitamins, amino acids, siderophores.
 b) Secondary metabolides: Antibacterial, antifungal, antiviral, insecticidal, anticancer, groth promoter herbicides, immunosupressive.
 c) Bioconversion products
 d) Recombinant products

UNIT VI: PROBIOTICS:
 a) Introduction to prebiotics, probiotics and synbiotics.
 b) Types of probiotics,
 c) Beneficial characteristics of probiotic microbes
d) Probiotic organisms and its role in human health.

Practicals:

1. Isolation of genomic DNA
2. Isolation of plasmid DNA.
3. Cultivation of yeasts and bacteria for single cell protein
4. Antibiotic sensitivity test
5. Isolation of antibiotic resistant mutants.
6. UV induced auxotrophic mutants production and isolation of mutants by replica plating technique.
7. Ames test for detecting potential carcinogenes.
8. Cultivation of actino mycetes.
9. Screening for antagonism

Distribution of marks for Industrial Microbiology Practical Examination:

1. Major Experiment - 15 marks
2. Minor Experiment - 10 Marks
3. Viva Voce - 10 marks
4. Spotting - 10 marks
5. Laboratory Journal - 05 Marks
6. Total - 50 marks

B.SC. FINAL (INDUSTRIAL MICROBIOLOGY) SEMESTER-VI

The examination shall comprise of two theory papers, one in each semester and one practical in each semester. Each theory paper will be of 3 hours duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of at least 4 hours duration in one day and shall carry 50 marks.

The following syllabus is prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question on every unit with internal choice for each of 12 marks & one compulsory question covering all the syllabus of semester-VI (8 Marks).
3) Transgenic Plants: -
 a) Resistance to biotic stresses: Insect resistance, virus resistance, fungal and bacterial disease resistance.
 b) Resistance to abiotic stresses: Herbicide resistance (Glyphosate, Phophinothricin, sulphonyl urea).

4) Improvement of crop yield and quality, Commercial transgenic crop plants.

UNIT IV: WASTE MANAGEMENT
1) Composition of Sewage, Need for waste water treatment
2) Physical, Biological & Chemical methods for treatment of industrial effluents
3) Solid waste management (outline).
4) Biogas production.
5) Composting

UNIT V: BIOREMEDIATION
1) Bioremediation, biodegradation, xenobiotics, recalcitrant compounds.
2) Types of bioremediation: In situ and Ex situ with advantages and disadvantages.
3) Role of microbes in -
 a) Degradation of crude oil
 b) Bioremediation of metals
 c) Recovery of metals
 d) Biodegradation of pesticides and herbicides.
4) Genetically engineered microbes in bioremediation.

UNIT VI: ENTREPRENEURSHIP
Basic regulations of excise. Survey the demand for a given microbial product, feasibility of its production under the given constraints, project preparation for financial assistance, different funding agencies. Subsidies for various projects, patenting the product.

Practicals
1) Preparation of various media for Tissue culture.
2) Development of Callus Culture.
3) Plant Regeneration from Callus Culture.
4) Organogenesis from different types of Explants.
5) Isolation and culture of plant protoplast.
6) Estimation of DO of different industrial effluents.
7) Estimation of BOD of different industrial effluents.
8) Estimation of COD of different industrial effluents.
9) Visit to Industrial effluent treatment plant, Dairy; Food processing industry etc.
10) Study tour.

Distribution of marks for Industrial Microbiology Practical Examination:
 1. Major Experiment - 15 marks
 2. Minor Experiment - 10 Marks
 3. Viva Voce - 10 marks
 4. Spotting - 10 marks
 5. Laboratory Journal - 05 Marks
 Total 50 marks

List of books recommended for SS and 6S:
2) Brown T.A. Gene Cloning- An Introduction, Chapman and Hall India.
9) Davar R.S, Principles and Practice of Management.
UNIT IV: Type of tissue culture: Disaggregation of tissues for primary culture - Primary explants technique, Enzymatic disaggregation, Mechanical disaggregation, Physical methods of cell separation.

5. Centrifuge
6. Inverted Microscope
7. Quartz Distillation unit
8. CO2 incubator
9. Magnetic stirrer
10. Water bath
11. Hot air oven

Books Recommended:
1. Freshney, R.J.: Culture of Animal Cells, Wiley-Lissz
3. Sudha Gangal: Principle and practice of animal tissue culture, Universities Press, India

Semester-V : Animal Cell Biotechnology
Distribution of Practical Marks:
1. Major Experiment 12 Marks
2. Minor Experiment 08 Marks
3. Spotting 05 Marks
4. Viva Voce 10 Marks
5. Practical Record 10 Marks
6. Study tour / visit 05 Marks

Total 50 Marks

B.S.C. FINAL (SEMESTER-VI)
20 : BIOTECHNOLOGY (REGULAR / VOCATIONAL)

The examination shall comprise of two theory papers, one in each semester and one practical in each Semester. Each theory paper will be of 3 hours duration and carry 80 marks. The internal assessment will carry 20 marks. The practical examination will be of at least 4 hours duration in one day and shall carry 50 marks.

The following syllabi are prescribed on the basis of six lectures per week and 6 practical periods per batch per week. Each theory paper has been divided into 6 units. There shall be one question in every unit with internal choice for each of 12 marks & one compulsory question covering all the syllabus of Semester-VI (8 marks).

6S : Biotechnology (Regular / Vocational)

PLANT BIOTECHNOLOGY

UNIT-IV: In vitro techniques in tissue culture: Beginning of in vitro culture. Clonal multiplication of elite species (Micropropagation) from axillary bud, shoot tips, protocorms (Orchids), meristem culture. Hardening of tissue cultured plants.

UNIT-VI: Somatic hybridization - Markers for selection of hybrid cells, Hybrids, cybrids, application of somatic hybridization,
protoplast and tissue culture for genetic manipulation of plants, various methods of genetic manipulations (electroporation, gene gun, Agrobacterium mediated, etc.), practical applications of genetic transformation of plants.

Practical:
1. Bioassay of Indole acetic acid using coleoptiles.
2. Bioassay of Gibberllic acid using barley seeds.
3. Initiation and maintenance of callus culture of soybean.
4. Bioassay Cytokin in using soyabean callus.
5. Study of growth parameters in callus culture.
6. Initiation and growth study of suspension culture.
7. Initiation of shoots from apical or axillary bud
8. Induction of shoot initiation by modulating hormone balance.
10. Single cell suspension culture from carrot.
11. Generation of somatic embryo from suspension culture of carrot.
12. Induction of Agrobacterium infection in any dicot leaf and maintenance of resultant callus.

Equipments:
1. Autoclave
2. Incubator with illumination and temperature control
3. Laminar flow
4. Balance
5. Centrifuge
6. Microscope
7. Quartz Distillation unit
8. Magnetic stirrer
9. Water bath
10. Hot air oven

Semester-VI: Plant Biotechnology

Distribution of Practical Marks:

<table>
<thead>
<tr>
<th>Practical</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Experiment</td>
<td>12</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>08</td>
</tr>
<tr>
<td>Spotting</td>
<td>05</td>
</tr>
<tr>
<td>Viva Voce</td>
<td>10</td>
</tr>
<tr>
<td>Practical Record</td>
<td>10</td>
</tr>
<tr>
<td>Study tour / visit</td>
<td>05</td>
</tr>
</tbody>
</table>

Total 50 Marks

Book Recommended:
1. Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture: (Ed.) J. Reinert and Y. S. P. Bajaj
2. Plant Tissue Culture: Application and Limitations: S. S. Bhojwani
5. Introduction to Plant Biotechnology: H. S. Chawla

B.SC. FINAL (SEMESTER-V)
21: BIOINFORMATICS
5S: BIOINFORMATICS

Paper V (Methods in Bioinformatics)

UNIT-I: Introduction to Database:
Importance of Database, Types of Database, Data Models, Data Abstraction, Test Databases. Database Design (DBMS & RDBMS), Data Security, Data Warehousing, capture and Analysis, Data Management and Architecture.
Microarray Database, Enzyme Database, Biodiversity Database.

UNIT-II: Biology and Computer Science:
Structural Organization of genome. In silico analysis of primary structures of nucleic acid sequences. Representing sequence Data, a program to store a DNA sequence, DNA Fragments, Transcription: DNA to RNA Nucleic Acid Sequence databases: GenBank, Genomic Databases. Repositories: EST and STS, Limitation of Computation Analysis.

UNIT-III: Mutations, Randomization and genetic code:
Random number generators. A program using randomization. A program to simulate DNA mutation generating random DNA analyzing DNA. The genetic code. Hashes data structures and algorithms for biology. Translating DNA into proteins. Reading DNA from files in
FASTA format reading frames. Database Similarity Searches: BLAST, FASTA, PSI-BLAST, BLAST-2

UNIT-IV: **Restriction Maps and Regular Expression:**

Regular expression restriction maps and restriction enzymes
Perl operations GenBank, GenBank files, GenBank libraries, separating sequence and annotation, parsing annotations indexing GenBank with DBM. Biological Databanks: Introduction to Biological databanks, Protein Sequence databanks: PDB, SRS, SWISSPROT

UNIT-V: **Protein Data Bank:**

The Organization of proteins. *In silico* analysis of primary structures of proteins, Protein Tertiary structure prediction methods: Homology modeling, fold recognition, Abintio Method. Comparison between and tertiary structure. Files and Folders PDB files parsing PDB files controlling other programs.

UNIT-VI: **HMM (Hidden Markov Model):** Introduction to HMM, its application in sequence alignment and structure prediction, based Softwares (HMMER and HMMSTR) obtaining BLAST String Matching and Homology, BLAST output files, parsing BLAST output presenting data bioperl.

Practicals:
1. Downloading primary structure of nucleic acids and proteins.
2. Protein Sequence comparison and analysis
3. Properties of primary structure of proteins using online tools.
4. *In silico* analysis of nucleic acids and proteins tools.
5. Installing perl and command lines arguments.
6. Access to Gene and Protein data bank.
8. Visualization of tertiary structure of proteins in Rasmol or Cn3d.
10. Homology search tools like BLAST.
12. Parremire sequence alignment with BLAST.

14. **Spreadsheet Applications:** (Database Management Sorting Records, finding, adding, deleting.)

Distribution of Practical Marks:

1. To perform one major experiments: 15 Marks
2. To perform two minor experiments: 15 Marks
3. Viva-voce: 10 Marks
4. Practical Record: 10 Marks

Total 50 Marks

List of Equipments:

1) Computer Terminals: 8 computers for batch Pentium-IV with latest configuration
2) Printer CDMP: Configuration: 02 Nos.
3) C++ Software (Compiler or Interpreter) 01
4) Perl Language Compiler 01
5) Broad Band Internet Connection 01

Recommended Books:

20. Bioinformatics and Functional Genomics Ŧ Jonathan Persner (3)
S.C.Rastogi, Namita Mendirata, Parag Rastogi, Bioinformatics concepts skills and application, CBS Publisher.
UNIT-VI: Perl and Programming :-

Practicals :-
Minimum 18 experiments based on theory paper Advanced Bio-computing covering all aspect of syllabus.

Distribution of Practical Marks :-
(5) To perform one major experiments : 15 Marks
(6) To perform two minor experiments : 15 Marks
(7) Viva-voce: 10 Marks
(8) Practical Record: 10 Marks

Total 50 Marks

List of Equipments :-

1) Computer Terminals :- Pentium-IV with latest configuration 8 computers for batch of 16 students
2) Printer CDMP : Configuration :- 02 Nos.
 24 pim, 132/80 columns
3) C++ Software (Compiler or Interpreter) 01
4) Perl Language Compiler 01
5) Broad Band Internet Connection 01

Recommended Books :
1) Object Oriented Programming with C++ : E.Balaguruswamy
2) Programming with C++ : R.S. Nisar Ali
3) Mastering C++ : Venugopalan.
4) C++ Programming : Ravi Chandran
5) Understanding Oracle : Perry and Latic î BPB
6) Essentials of oracle 8 : TOM Lewis.
7) An Introduction of Data Base Systems : C.J.Date î Narosa
8) Programming with C++ : Robert Lafore
9) Oracle Press Introduction to oracle (TMH)
10) Oracle Unleashed (Sams)

B.SC. FINAL (SEMESTER-V)
22 : APICULTURE
5S : APICULTURE
Paper V (Cytogenetic & Bee breeding)

Unit-I : A. Cytology in General: Cell and its structure and function, Cell division, Cell membrane, mitochondria, endoplasmic reticulum, lysosome, Golgi apparatus, nucleus. Elementary principles of heredity, Applications of genetics to bee improvement.

B. Inbreeding and heterosis, mass selection of superior genotypes. Examination of matings among superior genotypes is isolated apiaries.

Unit-II : A. Bee breeding: General methods of breeding and selection, mitosis and miosis, applicability of individual methods for bees.

B. Organization of breeding apiaries: Acquisition of colonies from their natural nests. Their transference to movable frame of standard hives.

Location of different types of breeding apiaries duly related to their functions. Equipment and tools for bee breeding programme. Special apiary management problems for bee breeding programme.

Unit-III : Selection Criteria : General Criteria- Particular criteria to meet the demands of local habitats, Desirable and undesirable characters. Quantitative and qualitative characters.
Differential components subscribing to higher yield and better performance - Honey yield, Body size, Tongue reach, frequency of egg laying and hatching, percentage Temper, Steadiness, Discretion, Absconding, Swarming, Parsimonious habit, Hive sanitation, Disease resistance.

Unit-IV

A. Individual colony records: Pedigree records system adapted for maternal living age of bees. Periodicity for observation and recordings. Providing uniform conditions for valid comparison of pedigrees.

Unit-V

Assigning of maternal pedigree number for selection: Rearing of pedigree queen bees. Migration for queen rearing programme. Distribution of individual groups to isolated apiaries for maximizing superior mating and minimizing inferior mating. Available resources. Advance provisioning for implementing the programme.

Unit-VI

Transport of sealed queen cells: Preparation of mating nuclei with sealed queen cells or virgin queens. Special management problems for organizing mating yards. Provision of adequate population or pedigree drones, single and multiple mating, mating signs. Re-migration of stocks, Progeny testing.

Equalization of colony strength through upgrading or downgrading for equal starts for pedigree and unselected controls.

Practical Course PR-5

1. DNA isolation from honey bee
2. Study of permanent stained slides (Meiosis)
3. Polytene Chromosome isolation and staining
4. Morphometric study of different species of honey bee.
5. Phylogenetic study of honey bee using sequences from NCBI
6. Mutation study using UV rays in honey bee larvae.
8. Demonstration of equalization of colonies.
age, health, egg laying, behavior of honeybees. Brood and food condition.

Unit-II : Special Management

A. Special Management for practice - Seasonal management, variation in management, pattern related to regional differences.

B. Method of recording humidity, Temperature and other meteorological data, use of thermometer, barometer, rain gauge, anemometer and other simple meteorological instruments.

D. Migratory Beekeeping: Survey, packing transporting, pollination service.

Unit-III : Queen Rearing : In nature, need and scope of artificial methods of queen rearing, various methods of preparing various mating nuclei and distribution of mating nuclei, packing bees, introduction of queens and packages, clipping and making queens.

Unit-IV : Marketing of honey & bee wax

A. Quality control & purity standard.

B. Organization of marketing of honey & bee wax.

D. Accounts and book keeping.

Unit-V : Beekeeping laws and regulations

A. Import restrictions on bee colonies package bees, queens, etc. in various countries, quarantine laws governing bee disease notifications in major honey producing countries.

B. Regulations, protecting bee populations against indiscriminate spraying.

C. Rules regarding honey house, processing, bottling packing, adulterations.

D. Laws governing standards on beekeeping equipments.

Unit-VI : Extension of Honey Bee Keeping:

A. Principles of Extension work with reference to Indian conditions and economy place of beekeeping in rural economics, beekeeping as agro-industry, and economics of the Industry: a glance of beekeeping in India and abroad.

B. Commission co-operative Organization, Model bye-laws, Role of co-operative movement in the propagation of Beekeeping in this country Registered Industries Commission.

Field study:
2. Study of different bee colonies (rock bees, florea & trigona species)

Practicals :-
1. To isolate and study pollen from freshly extracted honey
2. Extraction of wax from comb.
3. To study technique for mounting of wax foundation sheet to frame.
4. To monitor internal bee colony hive temperature and humidity.
5. To study properties of propolis.
6. To study physical properties of squeezed honey.
8. Methods of colony handling
9. Bee recognition with respect to sex, age, and brood.
10. Determination of humidity temperature and other meteorological factors,
11. Use of thermometers, rain gauge, anemometer.
12. Queen rearing and drone breeding.
13. Market survey technique
14. Costing of apiary products, quotations
15. Storage and packing of apiary products
16. Use of Computer in maintenance of stock quotations, etc.

Distribution of practical marks : 6 Hrs.

1. Practical based on apiculture management
 A. Methods of Colony handling 05 Marks
 B. Determination of meteorological factors 05 Marks
 C. Bee recognitions 05 Marks
2. Preparation of order/Bill of apiary products. OR
 Processing of assorted data by using computers 15 Marks
3. Spotters, based of Syllabus of the paper 10 Marks
4. Certified practical record 05 Marks
5. Viva-voce 05 Marks.

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>05</td>
</tr>
<tr>
<td>05</td>
</tr>
</tbody>
</table>

Total 50 Marks

List of Equipments-

1. Queen grafting kit.
2. Thermometers
3. Wax extraction unit.
4. Wax foundation sheet